Discriminative Latent Attribute Autoencoder for Zero-Shot Learning

被引:0
|
作者
Chen, Runqing [1 ,2 ]
Wu, Songsong [1 ]
Sun, Guangcheng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210023, Jiangsu, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Technol, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; Discriminative latent attribute; Autoencoder; Multiple spaces;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot learning aims to recognize classes without labeled samples training. One of the most widely utilized methodologies for ZSL is to learn a shared semantic embedding space with attributes directly. However, the user-defined attributes are not necessarily discriminative but treated directly and independently. Meanwhile, most approaches have the domain shift problem that means classes domain (seen and unseen) are different. To address these two problem, the paper presents a new model for ZSL addressing these two issues. Firstly, our model constructs a latent attribute space with the attribute space and the similarity space to make the latent attributes semantic and discriminative. Secondly, we apply two reconstruction constraints to the feature space and the similarity space with autoencoder. Thirdly, we combine the latent attribute space and the similarity space for ZSL prediction. We evaluate our model performance on two benchmark datasets, which is competitive to the existed approaches.
引用
收藏
页码:873 / 877
页数:5
相关论文
共 50 条
  • [31] Zero-Shot Classification with Discriminative Semantic Representation Learning
    Ye, Meng
    Guo, Yuhong
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5103 - 5111
  • [32] Hierarchical Coupled Discriminative Dictionary Learning for Zero-Shot Learning
    Li, Shuang
    Wang, Lichun
    Wang, Shaofan
    Kong, Dehui
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4973 - 4984
  • [33] Learning exclusive discriminative semantic information for zero-shot learning
    Jian-Xun Mi
    Zhonghao Zhang
    Debao Tai
    Li-Fang Zhou
    Wei Jia
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 761 - 772
  • [34] Improving Discriminative Learning for Zero-Shot Relation Extraction
    Tran, Van-Hien
    Ouchi, Hiroki
    Watanabe, Taro
    Matsumoto, Yuji
    PROCEEDINGS OF THE 1ST WORKSHOP ON SEMIPARAMETRIC METHODS IN NLP: DECOUPLING LOGIC FROM KNOWLEDGE (SPA-NLP 2022), 2022, : 1 - 6
  • [35] Zero-shot Learning using Graph Regularized Latent Discriminative Cross-domain Triplets
    Gune, Omkar
    Vora, Meet
    Banerjee, Biplab
    Chaudhuri, Subhasis
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [36] Region interaction and attribute embedding for zero-shot learning
    Hu, Zhengwei
    Zhao, Haitao
    Peng, Jingchao
    Gu, Xiaojing
    INFORMATION SCIENCES, 2022, 609 : 984 - 995
  • [37] GAN-MVAE: A discriminative latent feature generation framework for generalized zero-shot learning
    Ma, Peirong
    Lu, Hong
    Yang, Bohong
    Ran, Wu
    PATTERN RECOGNITION LETTERS, 2022, 155 : 77 - 83
  • [38] Joint attribute chain prediction for zero-shot learning
    Qiao, Lingfeng
    Tuo, Hongya
    Wang, Jiexin
    Wang, Chao
    Jing, Zhongliang
    IET COMPUTER VISION, 2018, 12 (06) : 873 - 881
  • [39] On Implicit Attribute Localization for Generalized Zero-Shot Learning
    Yang, Shiqi
    Wang, Kai
    Herranz, Luis
    van de Weijer, Joost
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 872 - 876
  • [40] Attribute Propagation Network for Graph Zero-Shot Learning
    Liu, Lu
    Zhou, Tianyi
    Long, Guodong
    Jiang, Jing
    Zhang, Chengqi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4868 - 4875