共 50 条
Quasi-universal bandwidth selection for kernel density estimators
被引:11
|作者:
Wegkamp, MH
[1
]
机构:
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
来源:
关键词:
asymptotic optimality;
data splitting;
empirical processes;
kernel density estimators;
projection estimators;
universal bandwidth selection;
D O I:
10.2307/3315649
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let (f) over cap(n), h denote the kernel density estimate based on a sample of size n drawn from an unknown density f. Using techniques from L-2 projection density estimators, the author shows how to construct a data-driven estimator (f) over cap(n), (H) which satisfies (sup)(bounded) lim sup(n --> infinity) integral E\(f) over cap(n),(H)(x) - f(x)\(2)dx/inf(h > 0)integral E\(f) over cap(n,h)(x)(\)(2)dx = 1. This paper is inspired by work of Stone (1984), Devroye and Lugosi (1996) and BirgC and Massart (1997).
引用
收藏
页码:409 / 420
页数:12
相关论文