Exact enumeration of self-avoiding walks on BCC and FCC lattices

被引:13
|
作者
Schram, Raoul D. [1 ,2 ]
Barkema, Gerard T. [3 ]
Bisseling, Rob H. [2 ]
Clisby, Nathan [4 ,5 ]
机构
[1] Ecole Normale Super Lyon, Lab Phys, 46 Allee Italie, F-69364 Lyon 07, France
[2] Univ Utrecht, Math Inst, POB 80010, NL-3508 TA Utrecht 3, Netherlands
[3] Univ Utrecht, Dept Informat & Comp Sci, POB 80089, NL-3508 TB Utrecht 4, Netherlands
[4] Swinburne Univ Technol, Dept Math, POB 218, Hawthorn, Vic 3122, Australia
[5] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
critical exponents and amplitudes; exact results; loop models and polymers; series expansions; EXCLUDED-VOLUME PROBLEM; HIGH-TEMPERATURE SERIES; CENTERED-CUBIC LATTICE; ISING MODEL; CRITICAL EXPONENTS; DIMENSIONS; BEHAVIOR;
D O I
10.1088/1742-5468/aa819f
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Self-avoiding walks on the body-centered-cubic (BCC) and face-centered-cubic (FCC) lattices are enumerated up to lengths 28 and 24, respectively, using the length-doubling method. Analysis of the enumeration results yields values for the exponents gamma and nu which are in agreement with, but less accurate than, those obtained earlier from enumeration results on the simple cubic lattice. The non-universal growth constant and amplitudes are accurately determined, yielding for the BCC lattice mu = 6.530 520(20), A = 1.1785(40), and D = 1.0864(50), and for the FCC lattice mu = 10.037075(20), A = 1.1736(24), and D = 1.0460(50).
引用
收藏
页数:15
相关论文
共 50 条
  • [41] EXAMINATION OF THE THETA-POINT FROM EXACT ENUMERATION OF SELF-AVOIDING WALKS .2.
    ISHINABE, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : 6435 - 6453
  • [42] AN EXACT FORMULA FOR THE NUMBER OF SPIRAL SELF-AVOIDING WALKS
    JOYCE, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (09): : L463 - L467
  • [43] DIRECT ENUMERATION STUDY OF SELF-AVOIDING WALKS ON TETRAHEDRAL LATTICE
    KUMBAR, M
    WINDWER, S
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (12): : 5257 - &
  • [44] Some enumeration theorems for self-avoiding walks I.
    Joseph, D
    Padmanabhan, AS
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2000, 39 (1-3): : 236 - 246
  • [45] SELF-AVOIDING WALKS
    SLADE, G
    MATHEMATICAL INTELLIGENCER, 1994, 16 (01): : 29 - 35
  • [46] SELF-AVOIDING WALKS
    PELITI, L
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (1-4): : 225 - 231
  • [47] SELF-AVOIDING WALKS
    HAMMERSLEY, JM
    PHYSICA A, 1991, 177 (1-3): : 51 - 57
  • [48] SELF-AVOIDING WALKS
    HAMMERSLEY, JM
    ADVANCES IN APPLIED PROBABILITY, 1975, 7 (02) : 234 - 234
  • [49] Confined Polymers as Self-Avoiding Random Walks on Restricted Lattices
    Benito, Javier
    Karayiannis, Nikos Ch.
    Laso, Manuel
    POLYMERS, 2018, 10 (12):
  • [50] THE TYPICAL NUMBER OF SELF-AVOIDING WALKS ON RANDOMLY DILUTED LATTICES
    VANDERZANDE, C
    KOMODA, A
    EUROPHYSICS LETTERS, 1991, 14 (07): : 677 - 682