Predicting Spectrum Occupancies Using a Non-Stationary Hidden Markov Model

被引:31
|
作者
Chen, Xianfu [1 ]
Zhang, Honggang [2 ,3 ,4 ]
MacKenzie, Allen B. [5 ]
Matinmikko, Marja [1 ]
机构
[1] VTT Tech Res Ctr Finland, Turku, Finland
[2] Zhejiang Univ, Dept Informat Sci & Elect Engn, Hangzhou, Peoples R China
[3] Univ Europeenne Bretagne, Bretagne, France
[4] Supelec, Paris, France
[5] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
Bayes' rule; cognitive radio; non-stationary hidden Markov model (NS-HMM); spectrum measurement; spectrum occupancy; spectrum prediction;
D O I
10.1109/LWC.2014.2315040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the critical challenges for secondary use of licensed spectrum is the accurate modeling of primary users' (PUs') stochastic behavior. However, the conventional hidden Markov models (HMMs) assume stationary state transition probability and fail to adequately describe PUs' dwell time distributions. In this letter, we propose a non-stationary hidden Markov model (NS-HMM), in which the time-varying property of PU behavior is realized. A variant of the Baum-Welch algorithm is developed to estimate the parameters of an NS-HMM. Finally, the performance of the proposed model is evaluated through experiments using real spectrum measurement data. The results show that the NS-HMM outperforms existing HMM-based approaches.
引用
收藏
页码:333 / 336
页数:4
相关论文
共 50 条
  • [31] Sampling From Gaussian Markov Random Fields Using Stationary and Non-Stationary Subgraph Perturbations
    Liu, Ying
    Kosut, Oliver
    Willsky, Alan S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (03) : 576 - 589
  • [32] A non-stationary Markov model for economic evaluation of grass pollen allergoid immunotherapy
    Bilancia, Massimo
    Pasculli, Giuseppe
    Di Bona, Danilo
    PLOS ONE, 2020, 15 (05):
  • [33] Non-Stationary Mobile-to-Mobile Channel Modeling Using the Gauss-Markov Mobility Model
    He, Ruisi
    Ai, Bo
    Stuber, Gordon L.
    Zhong, Zhangdui
    2017 9TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2017,
  • [34] A NON-STATIONARY MODEL OF ISOTACHOPHORESIS
    ZHUKOV, MY
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (02): : 138 - 149
  • [35] A non-stationary Cox model
    Pons, O
    Visser, M
    SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (04) : 619 - 639
  • [36] Predicting nucleosome positioning using a duration Hidden Markov Model
    Xi, Liqun
    Fondufe-Mittendorf, Yvonne
    Xia, Lei
    Flatow, Jared
    Widom, Jonathan
    Wang, Ji-Ping
    BMC BIOINFORMATICS, 2010, 11
  • [37] Predicting nucleosome positioning using a duration Hidden Markov Model
    Liqun Xi
    Yvonne Fondufe-Mittendorf
    Lei Xia
    Jared Flatow
    Jonathan Widom
    Ji-Ping Wang
    BMC Bioinformatics, 11
  • [38] Non-stationary signal analysis using TVAR model
    Ravi Shankar Reddy, G.
    Rao, Rameshwar
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7 (02) : 411 - 430
  • [39] Modeling and predicting non-stationary time series
    Cao, LY
    Mees, A
    Judd, K
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (08): : 1823 - 1831
  • [40] Modeling and Predicting Non-Stationary Time Series
    Cao, L.
    Mees, A.
    Judd, K.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (08):