Predicting Spectrum Occupancies Using a Non-Stationary Hidden Markov Model

被引:31
|
作者
Chen, Xianfu [1 ]
Zhang, Honggang [2 ,3 ,4 ]
MacKenzie, Allen B. [5 ]
Matinmikko, Marja [1 ]
机构
[1] VTT Tech Res Ctr Finland, Turku, Finland
[2] Zhejiang Univ, Dept Informat Sci & Elect Engn, Hangzhou, Peoples R China
[3] Univ Europeenne Bretagne, Bretagne, France
[4] Supelec, Paris, France
[5] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
Bayes' rule; cognitive radio; non-stationary hidden Markov model (NS-HMM); spectrum measurement; spectrum occupancy; spectrum prediction;
D O I
10.1109/LWC.2014.2315040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the critical challenges for secondary use of licensed spectrum is the accurate modeling of primary users' (PUs') stochastic behavior. However, the conventional hidden Markov models (HMMs) assume stationary state transition probability and fail to adequately describe PUs' dwell time distributions. In this letter, we propose a non-stationary hidden Markov model (NS-HMM), in which the time-varying property of PU behavior is realized. A variant of the Baum-Welch algorithm is developed to estimate the parameters of an NS-HMM. Finally, the performance of the proposed model is evaluated through experiments using real spectrum measurement data. The results show that the NS-HMM outperforms existing HMM-based approaches.
引用
收藏
页码:333 / 336
页数:4
相关论文
共 50 条
  • [1] A NON-STATIONARY HIDDEN MARKOV MODEL OF MULTIVIEW VIDEO TRAFFIC
    Rossi, Lorenzo
    Chakareski, Jacob
    Frossard, Pascal
    Colonnese, Stefania
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2921 - 2924
  • [2] A reservoir-driven non-stationary hidden Markov model
    Chatzis, Sotirios P.
    Demiris, Yiannis
    PATTERN RECOGNITION, 2012, 45 (11) : 3985 - 3996
  • [3] Equipment PHM using non-stationary segmental hidden semi-Markov model
    Dong, Ming
    Peng, Ying
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2011, 27 (03) : 581 - 590
  • [4] A non-stationary hidden Markov model for satellite propagation channel Modeling
    Lin, HP
    Tseng, MJ
    Tsai, FS
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2485 - 2488
  • [5] Model-based noise suppression using unsupervised estimation of hidden Markov model for non-stationary noise
    Fujimoto, Masakiyo
    Nakatani, Tomohiro
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 2981 - 2985
  • [6] Modelling fading properties for mobile satellite link channels using non-stationary hidden Markov model
    Lin, H. -P.
    Tseng, M. -C.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2009, 3 (01) : 171 - 180
  • [7] A hidden Markov model for non-stationary runoff modeling conditioned on El Nino information
    Gelati, E.
    Rosbjerg, D.
    Madsen, H.
    FROM HEADWATERS TO THE OCEAN: HYDROLOGICAL CHANGES AND WATERSHED MANAGEMENT, 2009, : 237 - +
  • [8] Principles of non-stationary Hidden Markov Model and its applications to sequence labeling task
    Xiao, JH
    Liu, BQ
    Wang, XL
    NATURAL LANGUAGE PROCESSING - IJCNLP 2005, PROCEEDINGS, 2005, 3651 : 827 - 837
  • [9] Blind separation of non-stationary sources using continuous density hidden Markov models
    Gu, Fanglin
    Zhang, Hang
    Zhu, Desheng
    DIGITAL SIGNAL PROCESSING, 2013, 23 (05) : 1549 - 1564
  • [10] Unsupervised segmentation of hidden semi-Markov non-stationary chains
    Lapuyade-Lahorgue, Jerome
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2012, 92 (01) : 29 - 42