Infrared surface plasmon spectroscopy and biosensing

被引:0
|
作者
Yashunsky, Victor [1 ]
Zilbershtein, Alexander [1 ]
Lirtsman, Vladislav [1 ]
Marciano, Tal [1 ]
Aroeti, Benjamin [2 ]
Golosovsky, Michael [1 ]
Davidov, Dan [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Dev & Cell Biol, IL-91904 Jerusalem, Israel
来源
关键词
Living Cells; Biosensor; Surface Plasmon; Label-free; Noninvasive method; Evanescent Waves; Infrared spectroscopy; RESONANCE; CELLS;
D O I
10.1117/12.907255
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cell morphology is a valuable indicator of the physical condition and general status of the cell. Here we demonstrate a methodology for noninvasive biosensing of adherent living cells. Our method is based on infrared reflection spectroscopy of living cells cultured on thin Au film. To characterize cell morphology we utilized the unique properties of the infrared surface plasmon (lambda = 1-3 mu m) and infrared guided wave that travel inside the cell monolayer. We demonstrate that our method enables monitoring of submicron variations in cell morphology in real-time and in a label-free manner. In addition to morphological characterization, our method allows investigation of chemical composition and molecular structure of cells through infrared absorption spectroscopy analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Tunable Tamm plasmon cavity as a scalable biosensing platform for surface enhanced resonance Raman spectroscopy
    Kandammathe Valiyaveedu Sreekanth
    Jayakumar Perumal
    U. S. Dinish
    Patinharekandy Prabhathan
    Yuanda Liu
    Ranjan Singh
    Malini Olivo
    Jinghua Teng
    Nature Communications, 14
  • [22] Tunable Tamm plasmon cavity as a scalable biosensing platform for surface enhanced resonance Raman spectroscopy
    Sreekanth, Kandammathe Valiyaveedu
    Perumal, Jayakumar
    Dinish, U. S.
    Prabhathan, Patinharekandy
    Liu, Yuanda
    Singh, Ranjan
    Olivo, Malini
    Teng, Jinghua
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [23] Confocal surface plasmon microscopy with vortex beam illumination for biosensing application Label free biosensing application of confocal surface plasmon microscope
    Pechprasam, Suejit
    Chow, Wai-Kin
    Meng, Jingkai
    Somekh, Michael G.
    2015 8TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2015,
  • [24] NONINVASIVE BIOSENSING WITH NEAR-INFRARED SPECTROSCOPY
    ARNOLD, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 99 - ANYL
  • [25] Surface plasmon resonance for biosensing: A mini-review
    Abdulhalim, Ibrahim
    Zourob, Mohammad
    Lakhtakia, Akhlesh
    ELECTROMAGNETICS, 2008, 28 (03) : 214 - 242
  • [26] Layered material platform for surface plasmon resonance biosensing
    Wu, F.
    Thomas, P. A.
    Kravets, V. G.
    Arola, H. O.
    Soikkeli, M.
    Iljin, K.
    Kim, G.
    Kim, M.
    Shin, H. S.
    Andreeva, D., V
    Neumann, C.
    Kuellmer, M.
    Turchanin, A.
    De Fazio, D.
    Balci, O.
    Babenko, V
    Luo, B.
    Goykhman, I
    Hofmann, S.
    Ferrari, A. C.
    Novoselov, K. S.
    Grigorenko, A. N.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [27] Plasmonic Metals for Nanohole-Array Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Biosensing
    Wu, Lin
    Zhou, Xiaodong
    Bai, Ping
    PLASMONICS, 2014, 9 (04) : 825 - 833
  • [28] Plasmonic Metals for Nanohole-Array Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Biosensing
    Lin Wu
    Xiaodong Zhou
    Ping Bai
    Plasmonics, 2014, 9 : 825 - 833
  • [29] Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells
    Zilbershtein, Alexander
    Golosovsky, Michael
    Lirtsman, Vladislav
    Aroeti, Benjamin
    Davidov, Dan
    VIBRATIONAL SPECTROSCOPY, 2012, 61 : 43 - 49
  • [30] Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy
    Jun Yi
    En-Ming You
    Song-Yuan Ding
    Zhong-Qun Tian
    NationalScienceReview, 2020, 7 (07) : 1228 - 1238