A Nonlinear Switched State-Space Model for Capacitive RF DACs

被引:17
|
作者
Trampitsch, Stefan [1 ,2 ]
Markovic, Jovan [1 ,3 ]
Ossmann, Patrick [4 ]
Fritzin, Jonas [5 ]
Zaleski, Jan [3 ]
Mayer, Christian [3 ]
Fulde, Michael [5 ]
Pretl, Harald [3 ,6 ]
Springer, Andreas [7 ]
Huemer, Mario [7 ]
机构
[1] Johannes Kepler Univ Linz, Inst Signal Proc, A-4040 Linz, Austria
[2] Intel Austria GmbH, A-9524 Villach, Austria
[3] Danube Mobile Commun Engn GmbH & Co KG, A-4040 Linz, Austria
[4] Sivers IMA AB, S-16429 Stockholm, Sweden
[5] Intel Deutschland GmbH, D-85579 Neubiberg, Germany
[6] Johannes Kepler Univ Linz, Inst Integrated Circuits, A-4040 Linz, Austria
[7] Johannes Kepler Univ Linz, Christian Doppler Lab Digitally Assisted RF Trans, A-4040 Linz, Austria
关键词
Switched-capacitor (SC) digital-to-analog converter (DAC); state-space model (SSM); capacitive DAC; switched-capacitor power amplifier (scpa); circuit modeling;
D O I
10.1109/TCSI.2017.2666773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a nonlinear state-space model (SSM) for a low power 28-nm complementary metal-oxide-semiconductor switched-capacitor digital-to-analog converter. The proposed model utilizes current-voltage (I-V) input and output relationships for passive devices, which are described by a set of first-order differential equations. The proposed model significantly increases accuracy when compared with the state-of-the-art models. The SSM simulation results have been verified using SpectreRF transistor-level simulations and validated by on-chip measurements.
引用
收藏
页码:1342 / 1353
页数:12
相关论文
共 50 条
  • [41] A state-space computational model for piezothermoelasticity
    Tarn, JQ
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1532 - 1534
  • [43] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [44] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [45] Adjoint Polynomial Formulas for Nonlinear State-Space Realization
    Belikov, Juri
    Kotta, Uelle
    Tonso, Maris
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (01) : 256 - 261
  • [46] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [47] On singular nonlinear H∞ control:: A state-space approach
    Hong, JL
    Teng, CC
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1999, 18 (04) : 351 - 364
  • [48] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [49] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [50] Nonlinear state-space Modeling of dynamic ground effect
    Yu, K
    Peters, DA
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2005, 50 (03) : 259 - 268