Simplification of Neuro-Fuzzy Models

被引:0
|
作者
Siminski, Krzysztof [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, PL-44100 Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS | 2009年 / 59卷
关键词
neuro-fuzzy system; hierarchical partition; simplification; INFERENCE SYSTEM; IDENTIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The neuro-fuzzy system presented in the paper is a system with parameterized consequences implementing hierarchical partition of the input domain. The regions are described with attributes values. In this system not all attribute values must be used to constitute the region. The attributes of minor importance may be ignored. The results of experiments show that the simplified model have less parameters and can achieve better generalisation ability.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [31] Study on application of a neuro-fuzzy models in air conditioning systems
    Costa, Herbert R. do N.
    La Neve, Alessandro
    SOFT COMPUTING, 2015, 19 (04) : 929 - 937
  • [32] Comparison between neuro-fuzzy and fractal models for permeability prediction
    Nuri Hurtado
    Milagrosa Aldana
    Julio Torres
    Computational Geosciences, 2009, 13 : 181 - 186
  • [33] Prediction of river flow using hybrid neuro-fuzzy models
    Azad, Armin
    Farzin, Saeed
    Kashi, Hamed
    Sanikhani, Hadi
    Karami, Hojat
    Kisi, Ozgur
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (22)
  • [34] Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems
    Gevaert, Arne
    Peck, Jonathan
    Saeys, Yvan
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [35] Application of neural networks and neuro-fuzzy models in construction scheduling
    Obianyo, Jude Iloabuchi
    Udeala, Richard Chinenye
    Alaneme, George Uwadiegwu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] A new methodology to improve interpretability in neuro-fuzzy TSK models
    Angel Velez, Miguel
    Sanchez, Omar
    Romero, Sixto
    Manuel Andujar, Jose
    APPLIED SOFT COMPUTING, 2010, 10 (02) : 578 - 591
  • [37] Development of the General Structure of the Knowledge Base for Neuro-Fuzzy Models
    Kopyrin, Andrey
    Vidishcheva, Evgeniya
    Makarova, Irina
    VIII INTERNATIONAL SCIENTIFIC SIBERIAN TRANSPORT FORUM, VOL 2, 2020, 1116 : 824 - 831
  • [38] Comparison between neuro-fuzzy and fractal models for permeability prediction
    Hurtado, Nuri
    Aldana, Milagrosa
    Torres, Julio
    COMPUTATIONAL GEOSCIENCES, 2009, 13 (02) : 181 - 186
  • [39] Prediction of river flow using hybrid neuro-fuzzy models
    Armin Azad
    Saeed Farzin
    Hamed Kashi
    Hadi Sanikhani
    Hojat Karami
    Ozgur Kisi
    Arabian Journal of Geosciences, 2018, 11
  • [40] Application of neural networks and neuro-fuzzy models in construction scheduling
    Jude Iloabuchi Obianyo
    Richard Chinenye Udeala
    George Uwadiegwu Alaneme
    Scientific Reports, 13