Novel three-dimensional Ni2P-MoS2 heteronanosheet arrays for highly efficient electrochemical overall water splitting

被引:23
|
作者
Zhang, Bo [1 ,2 ,3 ]
Xu, Keke [1 ,2 ,3 ]
Fu, Xiuli [1 ,2 ]
Guan, Shundong [1 ,2 ,3 ]
Li, Xiaomeng [1 ,2 ,3 ]
Peng, Zhijian [3 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni2P-MoS2 heterostructure nanosheet arrays; Carbon cloth current collector; Overall water splitting; Density functional theory calculation; HYDROGEN EVOLUTION REACTION; NICKEL PHOSPHIDE NANOPARTICLES; CARBON-FIBER PAPER; OXYGEN EVOLUTION; STABLE ELECTROCATALYST; NANOSHEETS; HYBRID; PERFORMANCE; CATALYSTS; ELECTRO;
D O I
10.1016/j.jallcom.2020.158094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nowadays, it is still a great challenge to explore highly active and stable noble-metal-free electrocatalysts for sustainable overall water splitting. In this work, a novel electrode of three-dimensional network-like Ni2P-MoS2 heterogeneous nanosheet arrays on carbon cloth (HNSAs/CC) was designed and fabricated by a two-step strategy. Benefiting from the unique 3D hierarchical architecture, large specific surface area, synergistic effects between Ni2P and MoS2, and the support of highly conductive carbon cloth, the obtained electrode exhibits superior electrocatalytic activity for hydrogen and oxygen evolution reaction (HER and OER) in 1 mol L-1 KOH aqueous solution with extremely low overpotentials of 78 and 258 mV respectively to deliver a current density of 10 mA cm(-2). The electrocatalytic system assembled with the obtained Ni2P-MoS2 HNSAs/CC sample as both anode and cathode for overall water splitting requires an impressively low onset potential of only 1.574 V to attain a current density of 10 mA cm(-2) and displays an excellent long-term stability. According to density functional theory calculation, the enhanced water splitting activity could be mainly attributed to the modified interfacial electronic structures and the enhanced thermoneutral adsorption of absorbates on the surface of Ni2P (110) - MoS2 (100) heterostructure. The calculated theoretical overpotentials for HER and OER based on Ni2P (110) - MoS2 (100) heterostructure are 0.019 and 0.279 V, respectively. The facile synthesis method and insights into the HER and OER active interfaces reported here will advance the development of high-performance bifunctional overall water splitting electrocatalysts. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fabrication of a Three-Dimensional Bionic Si/TiO2/MoS2 Photoelectrode for Efficient Solar Water Splitting
    Li, Xin
    Li, Ying
    Wang, Haijun
    Miao, Hongyan
    Zhu, Haiyan
    Liu, Xuefeng
    Lin, Haibo
    Shi, Gang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 730 - 736
  • [22] A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting
    Bu, Xiuming
    Wei, Renjie
    Gao, Wei
    Lan, Changyong
    Ho, Johnny C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 12325 - 12332
  • [23] Trimetallic CoFeCr-LDH@MoS2 as a highly efficient bifunctional electrocatalyst for overall water splitting
    Chen, Shuang
    Zhang, Yekai
    Zhong, Hong
    Cao, Zhanfang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 655
  • [24] In situ electrochemical metal (Co, Ni) oxide deposition on MoS2 nanosheets for highly efficient electrocatalytic water splitting
    Zhong, Yueyao
    Wang, Shouzhi
    Zhang, Lei
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (09) : 4430 - 4438
  • [25] MoS2 A Ni3S2 A NF Bifunctional Electrocatalysts for Efficient Overall Water Splitting
    Jia F.
    Wei X.
    Bao W.
    Zou X.
    Cailiao Daobao/Materials Reports, 2024, 38 (04):
  • [26] MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting
    Yang, Yaqing
    Zhang, Kai
    Ling, Huanlei
    Li, Xiang
    Chan, Hang Cheong
    Yang, Lichun
    Gao, Qingsheng
    ACS CATALYSIS, 2017, 7 (04): : 2357 - 2366
  • [27] Integrated NiP nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation
    Jintao Ren
    Zhongpan Hu
    Chong Chen
    Yuping Liu
    Zhongyong Yuan
    Journal of Energy Chemistry , 2017, (06) : 1196 - 1202
  • [28] Controllable synthesis of three dimensional electrodeposited Co-P nanosphere arrays as efficient electrocatalysts for overall water splitting
    Han, Guan-Qun
    Li, Xiao
    Liu, Yan-Ru
    Dong, Bin
    Hu, Wen-Hui
    Shang, Xiao
    Zhao, Xin
    Chai, Yong-Ming
    Liu, Yun-Qi
    Liu, Chen-Guang
    RSC ADVANCES, 2016, 6 (58): : 52761 - 52771
  • [29] Facile synthesis and electrochemical performances of three dimensional Ni3S2 as bifunctional electrode for overall water splitting
    Cui, Kexin
    Fan, Jincheng
    Li, Songyang
    Li, Shidong
    Khadidja, Moukaila Fatiya
    Wu, Jianghong
    Wang, Mingyu
    Lai, Jianxin
    Jin, Hong-Guang
    Luo, Wenbin
    Chao, Zisheng
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 263
  • [30] Autogenous growth of highly active bifunctional Ni-Fe2B nanosheet arrays toward efficient overall water splitting
    Yao, Rui
    Wu, Yun
    Zhao, Qiang
    Li, Jinping
    Liu, Guang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (13) : 8303 - 8313