QUASISYMMETRIC UNIFORMIZATION AND HEAT KERNEL ESTIMATES

被引:7
|
作者
Murugan, Mathav [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasisymmetry; uniformization; circle packing; sub-Gaussian estimate; Harnack inequality; PLANAR GRAPHS; HARNACK INEQUALITIES; HARMONIC-FUNCTIONS; VOLUME GROWTH; RANDOM-WALKS; STABILITY; BOUNDARY; CAPACITY; SPACES;
D O I
10.1090/tran/7713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the circle packing embedding in R-2 of a one-ended, planar triangulation with polynomial growth is quasisymmetric if and only if the simple random walk on the graph satisfies sub-Gaussian heat kernel estimate with spectral dimension two. Our main results provide a new family of graphs and fractals that satisfy sub-Gaussian estimates and Harnack inequalities.
引用
收藏
页码:4177 / 4209
页数:33
相关论文
共 50 条
  • [41] Heat kernel estimates for time fractional equations
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    Wang, Jian
    FORUM MATHEMATICUM, 2018, 30 (05) : 1163 - 1192
  • [42] Heat kernel estimates with application to compactness of manifolds
    Gong, FZ
    Wang, FY
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 171 - 180
  • [43] Geodesic metrics on fractals and applications to heat kernel estimates
    Qingsong Gu
    Ka-Sing Lau
    Hua Qiu
    Huo-Jun Ruan
    Science China(Mathematics), 2023, 66 (05) : 907 - 934
  • [44] Heat kernel estimates on effective resistance metric spaces
    Hu Jiaxin Ji Yuan Wen Zhiying (Department of Mathematical Sciences
    Progress in Natural Science, 2007, (07) : 775 - 783
  • [45] Estimates of Dirichlet heat kernel for symmetric Markov processes
    Grzywny, Tomasz
    Kim, Kyung-Youn
    Kim, Panki
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (0I) : 431 - 470
  • [46] Gaussian heat kernel estimates: From functions to forms
    Coulhon, Thierry
    Devyver, Baptiste
    Sikora, Adam
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 761 : 25 - 79
  • [47] Asymptotic estimates for the heat kernel on Heisenberg groups.
    Li, Hong-Quan
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) : 497 - 502
  • [48] Heat kernel estimates on connected sums of parabolic manifolds
    Grigor'yan, Alexander
    Ishiwata, Satoshi
    Saloff-Coste, Laurent
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 113 : 155 - 194
  • [49] On the equivalence of parabolic Harnack inequalities and heat kernel estimates
    Barlow, Martin T.
    Grigor'yan, Alexander
    Kumagai, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) : 1091 - 1146
  • [50] Heat kernel estimates for critical fractional diffusion operators
    Xie, Longjie
    Zhang, Xicheng
    STUDIA MATHEMATICA, 2014, 224 (03) : 221 - 263