Atom-by-Atom Construction of a Quantum Device

被引:8
|
作者
Petta, Jason R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Kane quantum computer; quantum device; spectroscopy; silicon; phosphorus; ELECTRON-SPIN;
D O I
10.1021/acsnano.7b00850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.
引用
收藏
页码:2382 / 2386
页数:5
相关论文
共 50 条
  • [31] Atom-by-Atom Observation of Grain Boundary Migration in Graphene
    Kurasch, Simon
    Kotakoski, Jani
    Lehtinen, Ossi
    Skakalova, Viera
    Smet, Jurgen
    Krill, Carl E., III
    Krasheninnikov, Arkady V.
    Kaiser, Ute
    NANO LETTERS, 2012, 12 (06) : 3168 - 3173
  • [32] Author Correction: Atom-by-atom fabrication with electron beams
    Ondrej Dyck
    Maxim Ziatdinov
    David B. Lingerfelt
    Raymond R. Unocic
    Bethany M. Hudak
    Andrew R. Lupini
    Stephen Jesse
    Sergei V. Kalinin
    Nature Reviews Materials, 2021, 6 (7) : 640 - 640
  • [33] Atom-by-atom analysis of diamond, graphite, and vitreous carbon by the scanning atom probe
    Nishikawa, O
    Ohtani, Y
    Maeda, K
    Watanabe, M
    Tanaka, K
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (02): : 653 - 660
  • [34] Core and valence electrons in atom-by-atom descriptions of molecules
    Fliszár, S
    Vauthier, EC
    Barone, V
    ADVANCES IN QUANTUM CHEMISTRY, VOL 36: FROM ELECTRONIC STRUCTURE TO TIME-DEPENDENT PROCESSES, 1999, 36 : 27 - 44
  • [35] Atom-by-atom analysis of global downhill protein folding
    Mourad Sadqi
    David Fushman
    Victor Muñoz
    Nature, 2006, 442 : 317 - 321
  • [36] Non-Empirical Law for Nanoscale Atom-by-Atom Wear
    Wang, Yang
    Xu, Jingxiang
    Ootani, Yusuke
    Ozawa, Nobuki
    Adachi, Koshi
    Kubo, Momoji
    ADVANCED SCIENCE, 2021, 8 (02)
  • [37] Atom-by-atom analysis of non-metallic materials by the scanning atom probe
    Nishikwa, O
    Taniguchi, M
    CHINESE JOURNAL OF PHYSICS, 2005, 43 (01) : 111 - 123
  • [38] ATOM-BY-ATOM SYNTHESIS OF HYDROCARBON FRAGMENTS ON METAL-SURFACES
    XI, M
    BENT, B
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 340 - COLL
  • [39] Tuning friction atom-by-atom in an ion-crystal simulator
    Bylinskii, Alexei
    Gangloff, Dorian
    Vuletic, Vladan
    SCIENCE, 2015, 348 (6239) : 1115 - 1118
  • [40] Atom-by-Atom Tuning of an Electrostatic Potassium-Channel Modulator
    Ejneby, Malin Silvera
    Wu, Xiongyu
    Ottosson, Nina E.
    Munger, E. Peter
    Lundstrom, Ingemar
    Konradsson, Peter
    Elinder, Fredrik
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 375A - 375A