Ovoids and primitive normal bases for quartic extensions of Galois fields

被引:0
|
作者
Hachenberger, Dirk [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
Finite field; Galois field; Normal basis; Primitive element; Primitive normal element; Projective space; Ovoid; Ovoid partition;
D O I
10.1007/s10801-019-00920-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine lower bounds for the number of primitive normal elements in a four-dimensional extension E over a Galois field F=GF(q). Our approach is based on viewing E as the three-dimensional projective space Gamma=PG(3,q). In any of the three cases, whether q is even, or q equivalent to 3mod4, we use a decomposition of the multiplicative group of E in order to determine a (canonical) partition of the point set of Gamma are distinguished into primitive and non-primitive ones, and an ovoid is called primitive if it contains at least one primitive point. The bounds are derived by studying the intersections of the primitive ovoids with the configuration of those points of Gamma is a prime number when q is even, or that 12(q2+1) is a prime number when q is odd, we actually achieve the exact number of all primitive normal elements for the quartic extension over F.
引用
收藏
页码:85 / 114
页数:30
相关论文
共 50 条
  • [21] Self-dual normal bases for infinite Galois field extensions
    Lundström, P
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) : 4331 - 4341
  • [22] Hopf-Galois module structure of quartic Galois extensions of Q
    Gil-Munoz, Daniel
    Rio, Anna
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (09)
  • [23] Euclidean algorithm in Galois quartic fields
    Srinivas, K.
    Subramani, M.
    Sangale, Usha K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 26 - 26
  • [24] Euclidean algorithm in Galois quartic fields
    K. Srinivas
    M. Subramani
    Usha K. Sangale
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1 - 7
  • [25] RELATIVE POWER INTEGRAL BASES IN INFINITE FAMILIES OF QUARTIC EXTENSIONS OF QUADRATIC FIELDS
    Gaal, Istvan
    Szabo, Timea
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 29 (01): : 31 - 43
  • [26] Quartic fields and radical extensions
    Chu, H
    Kang, MC
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (01) : 83 - 89
  • [27] On the existence of primitive completely normal bases of finite fields
    Garefalakis, Theodoulos
    Kapetanakis, Giorgos
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 909 - 921
  • [28] Normal bases and primitive elements over finite fields
    Kapetanakis, Giorgos
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 : 123 - 143
  • [29] Normal bases for quadratic extensions inside cyclotomic fields
    Ayala, EJG
    ARCHIV DER MATHEMATIK, 1996, 66 (02) : 123 - 125
  • [30] Galois extensions and O*-fields
    Evans, Kenneth
    Ma, Jingjing
    POSITIVITY, 2023, 27 (02)