Cisoid parameter estimation in the colored noise case: Asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares

被引:77
|
作者
Stoica, P [1 ]
Jakobsson, A [1 ]
Li, J [1 ]
机构
[1] UNIV FLORIDA,DEPT ELECT ENGN,GAINESVILLE,FL 32611
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.611203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of estimating the parameters of complex-valued sinusoidal signals (cisoids, for short) from data corrupted by colored noise occurs in many signal processing applications, We present a simple formula for the asymptotic (large-sample) Cramer-Rao bound (CRB) matrix associated with this problem. The maximum likelihood method (MLM), which estimates both the signal and noise parameters, attains the performance corresponding to the asymptotic CRB, as the sample length increases. More interestingly, we show that a computationally much simpler nonlinear least-squares method (NLSM), which estimates the signal parameters only, achieves the same performance in large samples.
引用
收藏
页码:2048 / 2059
页数:12
相关论文
共 50 条
  • [1] MAXIMUM-LIKELIHOOD DOA ESTIMATION AND ASYMPTOTIC CRAMER-RAO BOUNDS FOR ADDITIVE UNKNOWN COLORED NOISE
    YE, H
    DEGROAT, RD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (04) : 938 - 949
  • [2] Method of cramer-Rao bound for maximum likelihood signal-to-noise estimation
    Hu, Shengbo
    Meng, Xin
    Yao, Xiujuan
    Zhao, Na
    Yan, Yi
    Yi Qi Yi Biao Xue Bao, 2007, SUPPL. 2 (848-851): : 848 - 851
  • [3] The stability of nonlinear least squares problems and the Cramer-Rao bound
    Basu, S
    Bresler, Y
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (12) : 3426 - 3436
  • [4] Maximum-likelihood estimation, the Cramer-Rao bound, and the method of scoring with, parameter constraints
    Moore, Terrence J.
    Sadler, Brian M.
    Kozick, Richard J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 895 - 908
  • [5] Cramer-Rao lower bound and maximum-likelihood estimation in ptychography with Poisson noise
    Wei, Xukang
    Urbach, H. Paul
    Coene, Wim M. J.
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [6] Uniformly improving the Cramer-Rao bound and maximum-likelihood estimation
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 2943 - 2956
  • [7] Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramer-Rao Bound
    Eldar, Yonina C.
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2007, 1 (04): : 306 - 449
  • [8] Cramer-Rao lower bound for parameter estimation in nonlinear systems
    Lin, ZP
    Zou, QY
    Ward, ES
    Ober, RJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) : 855 - 858
  • [9] MUSIC, MAXIMUM-LIKELIHOOD, AND CRAMER-RAO BOUND
    STOICA, P
    NEHORAI, A
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (05): : 720 - 741
  • [10] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376