A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries

被引:107
|
作者
Fan, Xiaoping [1 ,4 ]
Tan, Chunlei [1 ,4 ]
Li, Yu [1 ,4 ]
Chen, Zhiqiang [1 ,4 ]
Li, Yahao [2 ,3 ]
Huang, Youguo [1 ,4 ]
Pan, Qichang [1 ,4 ]
Zheng, Fenghua [1 ,4 ]
Wang, Hongqiang [1 ,4 ]
Li, Qingyu [1 ,4 ]
机构
[1] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guangxi Key Lab Low Carbon Energy Mat, Guilin 541004, Peoples R China
[2] Zhejiang Univ, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[4] Guangxi Normal Univ, Guangxi New Energy Ship Battery Engn Technol Res, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Cathode material; LiNi0.5Co0.2Mn0.3O2; Regeneration technology; Reconstructing;
D O I
10.1016/j.jhazmat.2020.124610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g(-1) at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effect of Calcining Temperatures on the Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium Ion Batteries
    Wang, Xiaoman
    Zhang, Hai-Lang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (01): : 1 - 11
  • [22] Surface modification with oxygen vacancy in LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries
    Feng, Liwei
    Liu, Yan
    Wu, Lei
    Qin, Wenchao
    Yang, Zihao
    Liu, Jinfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 881
  • [23] A facile eutectic mixed molten salt method for synthesizing LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries
    Xing, Xiaoyan
    Li, Xuetian
    Shao, Zhongcai
    Dai, Shihang
    Cui, Yong
    Chen, Xiaojiao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 686
  • [24] Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode with Different Carbon Additives for Lithium-ion Batteries
    Chen, Xiaolan
    Lu, Wanzheng
    Chen, Chen
    Xue, Mingzhe
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 296 - 304
  • [25] Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries
    Wu, Feng
    Tian, Jun
    Su, Yuefeng
    Guan, Yibiao
    Jin, Yi
    Wang, Zhao
    He, Tao
    Bao, Liying
    Chen, Shi
    JOURNAL OF POWER SOURCES, 2014, 269 : 747 - 754
  • [26] Effects of LaPO4 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Jiang, Xiaodong
    Yuan, Zhentao
    Liu, Jianxiong
    Jin, Xin
    Jin, Liying
    Dong, Peng
    Zhang, Yingjie
    Yao, Yuhan
    Cheng, Qi
    Liu, Cheng
    Zhang, Yannan
    Yu, Xiaohua
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2341 - 2354
  • [27] An effective modification strategy enhancing the structure stability and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries
    Zhang, Yang
    Cui, Can
    Liu, Jie
    Bei, Yiying
    Li, Yingying
    Song, Zheng
    Feng, Yaxin
    Xu, Heng
    Tian, Suhuan
    Song, Ye
    Li, Fengsheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 887
  • [28] Recycling and reusing of LiNi0.5Co0.2Mn0.3O2 scrap for lithium ion batteries and investigation of material performance for lithium ion batteries
    Miao J.-L.
    Wang Y.
    Shao D.
    Zhao R.-R.
    Chen H.-Y.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2020, 30 (09): : 2171 - 2177
  • [29] A Ternary Molten Salt Approach for Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode
    Qin, Zuoyu
    Wen, Zuxin
    Xu, Yifei
    Zheng, Zhicheng
    Bai, Mingliang
    Zhang, Ning
    Jia, Chuankun
    Wu, Hao Bin
    Chen, Gen
    SMALL, 2022, 18 (43)
  • [30] Na and Cl co-doping modified LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion battery
    Song, Liubin
    Zheng, Youhang
    Kuang, Yinjie
    Zhao, Tingting
    Xia, Yubo
    Xiao, Minzhi
    Xiang, Youtao
    Xiao, Zhongliang
    Tang, Fuli
    NANOTECHNOLOGY, 2023, 34 (36)