The simplest case of Ramsey's theorem

被引:0
|
作者
Thomason, A [1 ]
机构
[1] DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a somewhat personalized, and far from comprehensive, essay on the "simplest case" of Ramsey's theorem, namely, the two-coloured graph case.
引用
收藏
页码:667 / 695
页数:29
相关论文
共 50 条
  • [31] RAMSEY THEOREM
    BURGESS, JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A391 - A391
  • [32] The inductive strength of Ramsey's Theorem for Pairs
    Chong, C. T.
    Slaman, Theodore A.
    Yang, Yue
    ADVANCES IN MATHEMATICS, 2017, 308 : 121 - 141
  • [33] A Geodesic Variation on Ramsey's Theorem for Paths
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (06): : 569 - 569
  • [34] A PACKED RAMSEY'S THEOREM AND COMPUTABILITY THEORY
    Flood, Stephen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 4957 - 4982
  • [35] A rainbow Ramsey analogue of Rado's theorem
    De Loera, J. A.
    La Haye, R. N.
    Montejano, A.
    Oliveros, D.
    Roldan-Pensado, E.
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2812 - 2818
  • [36] ON THE UNIFORM COMPUTATIONAL CONTENT OF RAMSEY'S THEOREM
    Brattka, Vasco
    Rakotoniaina, Tahina
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (04) : 1278 - 1316
  • [37] THE METAMATHEMATICS OF STABLE RAMSEY'S THEOREM FOR PAIRS
    Chong, C. T.
    Slaman, Theodore A.
    Yang, Yue
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) : 863 - 892
  • [38] Noncommutative topology and the world's simplest index theorem
    van Erp, Erik
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) : 8549 - 8556
  • [39] The simplest proof of Burnside's theorem on matrix algebras
    Lomonosov, V
    Rosenthal, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 : 45 - 47
  • [40] Ramsey’s theorem for trees: the polarized tree theorem and notions of stability
    Damir D. Dzhafarov
    Jeffry L. Hirst
    Tamara J. Lakins
    Archive for Mathematical Logic, 2010, 49 : 399 - 415