THE PACKING MEASURE OF THE RANGE OF SUPER-BROWNIAN MOTION

被引:2
|
作者
Duquesne, Thomas [1 ]
机构
[1] Univ Paris 04, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
来源
ANNALS OF PROBABILITY | 2009年 / 37卷 / 06期
关键词
Super-Brownian motion; Brownian Snake; range; exact packing measure; RANDOM TREE;
D O I
10.1214/09-AOP468
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the total range of Super-Brownian motion with quadratic branching mechanism has an exact packing measure with respect to the gauge function g(r) = r(4)(log log l/r)(-3) in super-critical dimensions d >= 5. More precisely, we prove that the total occupation measure of Super-Brownian motion is equal to the g-packing measure restricted to its range, up to a deterministic multiplicative constant that only depends on space dimension d.
引用
收藏
页码:2431 / 2458
页数:28
相关论文
共 50 条
  • [31] Lifetime and compactness of range for super-Brownian motion with a general branching mechanism
    Sheu, YC
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 70 (01) : 129 - 141
  • [32] ON THE BOUNDARY OF THE SUPPORT OF SUPER-BROWNIAN MOTION
    Mueller, Carl
    Mytnik, Leonid
    Perkins, Edwin
    ANNALS OF PROBABILITY, 2017, 45 (6A): : 3481 - 3534
  • [34] Lattice trees and super-Brownian motion
    Derbez, E
    Slade, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 19 - 38
  • [35] The dimension of the boundary of super-Brownian motion
    Mytnik, Leonid
    Perkins, Edwin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 821 - 885
  • [36] The multifractal structure of super-Brownian motion
    Perkins, EA
    Taylor, SJ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 97 - 138
  • [37] The average density of super-Brownian motion
    Mörters, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (01): : 71 - 100
  • [38] On the martingale problem for super-Brownian motion
    Bass, RF
    Perkins, EA
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 195 - 201
  • [39] Bessel Processes, the Brownian Snake and Super-Brownian Motion
    Le Gall, Jean-Francois
    IN MEMORIAM MARC YOR - SEMINAIRE DE PROBABILITES XLVII, 2015, 2137 : 89 - 105
  • [40] The biodiversity of catalytic super-Brownian motion
    Fleischmann, K
    Klenke, A
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1121 - 1136