On one modulus inequality for mappings with finite length distortion

被引:0
|
作者
Sevost'yanov, E. A. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Math & Mech, Donetsk, Ukraine
关键词
Quasiconformal Mapping; Topological Index; Borel Function; Normal Domain; Quasiregular Mapping;
D O I
10.1007/s11253-009-0242-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Vaisala inequality, which is well known in the theory of quasilinear mappings, is extended to the class of mappings with finite length distortion.
引用
收藏
页码:810 / 820
页数:11
相关论文
共 50 条
  • [31] Mappings of finite distortion: Monotonicity and continuity
    Tadeusz Iwaniec
    Pekka Koskela
    Jani Onninen
    Inventiones mathematicae, 2001, 144 : 507 - 531
  • [32] Mappings of finite distortion: Removable singularities
    Pekka Koskela
    Kai Rajala
    Israel Journal of Mathematics, 2003, 136 : 269 - 283
  • [34] On the theory of mappings with finite area distortion
    Denis Kovtonyk
    Vladimir Ryazanov
    Journal d'Analyse Mathématique, 2008, 104
  • [35] Mappings of Finite Distortion:¶Discreteness and Openness
    Janne Kauhanen
    Pekka Koskela
    Jan Malý
    Archive for Rational Mechanics and Analysis, 2001, 160 : 135 - 151
  • [36] Mappings of finite distortion: Composition operator
    Hencl, Stanislav
    Koskela, Pekka
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (01) : 65 - 80
  • [37] On the theory of mappings with finite area distortion
    Kovtonyk, Denis
    Ryazanov, Vladimir
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 291 - 306
  • [38] Mappings of finite distortion: the degree of regularity
    Faraco, D
    Koskela, P
    Zhong, X
    ADVANCES IN MATHEMATICS, 2005, 190 (02) : 300 - 318
  • [39] Mappings of Finite Distortion of Polynomial Type
    Changyu Guo
    The Journal of Geometric Analysis, 2014, 24 : 1052 - 1063
  • [40] On the weak limit of mappings with finite distortion
    Yan, BS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3335 - 3340