Matlab implementation of the finite element method in elasticity

被引:90
|
作者
Alberty, J
Carstensen, C
Funken, SA
Klose, R
机构
[1] Univ Kiel, Math Seminar, Bereich 2, D-24098 Kiel, Germany
[2] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
关键词
finite element method; elasticity; Matlab;
D O I
10.1007/s00607-002-1459-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A short Matlab implementation for P-1 and Q(1) finite elements (FE) is provided for the numerical solution of 2d and 3d problems in linear elasticity with mixed boundary conditions. Any adaptation from the simple model examples provided to more complex problems can easily be performed with the given documentation. Numerical examples with postprocessing and error estimation via an averaged stress field illustrate the new Matlab tool and its flexibility.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 50 条
  • [21] An immersed finite element method for elasticity equations with interfaces
    Li, ZL
    Yang, XZ
    Recent Advances in Adaptive Computation, Proceedings, 2005, 383 : 285 - 298
  • [22] Weighted finite element method for an elasticity problem with singularity
    V. A. Rukavishnikov
    S. G. Nikolaev
    Doklady Mathematics, 2013, 88 : 705 - 709
  • [23] Immersed Finite Element Method for Eigenvalue Problems in Elasticity
    Lee, Seungwoo
    Kwak, Do Young
    Sim, Imbo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) : 424 - 444
  • [24] Weighted finite element method for elasticity problem with a crack
    Rukavishnikov, V. A.
    Mosolapov, A. O.
    Rukavishnikova, E., I
    COMPUTERS & STRUCTURES, 2021, 243
  • [25] Weighted finite element method for an elasticity problem with singularity
    Rukavishnikov, V. A.
    Nikolaev, S. G.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 705 - 709
  • [26] Generalized multiscale finite element method for elasticity equations
    Chung E.T.
    Efendiev Y.
    Fu S.
    GEM - International Journal on Geomathematics, 2014, 5 (2) : 225 - 254
  • [27] A finite element method for nearly incompressible elasticity problems
    Braess, D
    Ming, P
    MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 25 - 52
  • [28] A mixed finite element method for elasticity in three dimensions
    Adams, S
    Cockburn, B
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (03) : 515 - 521
  • [29] THE RANDOM VARIATIONAL PRINCIPLE IN FINITE DEFORMATION OF ELASTICITY AND FINITE ELEMENT METHOD
    高行山
    张汝清
    AppliedMathematicsandMechanics(EnglishEdition), 1994, (10) : 903 - 911
  • [30] A cell-based smoothed finite element method for finite elasticity
    Francis, Amrita
    Natarajan, Sundararajan
    Lee, Changkye
    Budarapu, Pattabhi R.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2022, 23 (06): : 536 - 550