Conservation Laws for Two Dimensional Nonlinear Schrodinger Equation

被引:3
|
作者
Bekova, G. T. [1 ,2 ]
Shaikhova, G. N. [1 ,2 ]
Yesmakhanova, K. R. [1 ,3 ]
Myrzakulov, R. [1 ,2 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Eurasian Int Ctr Theoret Phys, Nur Sultan, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, Dept Gen & Theoret Phys, Nur Sultan, Kazakhstan
[3] LN Gumilyov Eurasian Natl Univ, Dept Higher Math, Nur Sultan, Kazakhstan
关键词
D O I
10.1063/1.5127468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Schrodinger equation is a well-known partial di fferential equation, which provides a successful model in nonlinear optic theory, as well as other applications. The conservation law plays an important role in the study of nonlinear evolutionary equations. In this paper, we construct infinitely many conservation laws for the two-dimensional nonlinear Schrodinger equation with the Lax pair.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A Galerkin Splitting Symplectic Method for the Two Dimensional Nonlinear Schrodinger Equation
    Mu, Zhenguo
    Li, Haochen
    Wang, Yushun
    Cai, Wenjun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (05) : 1069 - 1089
  • [42] TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA
    Deng, Yu
    ANALYSIS & PDE, 2012, 5 (05): : 913 - 960
  • [43] Peak point displacement in the two-dimensional nonlinear Schrodinger equation
    Yang, Y
    Tan, Y
    Zhang, WY
    Zheng, CY
    PHYSICS LETTERS A, 1996, 216 (06) : 247 - 254
  • [44] Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrodinger equation
    Zhang, Hai-Qiang
    Tian, Bo
    Meng, Xiang-Hua
    Lue, Xing
    Liu, Wen-Jun
    EUROPEAN PHYSICAL JOURNAL B, 2009, 72 (02): : 233 - 239
  • [45] Conservation laws, modulation instability and solitons interactions for a nonlinear Schrodinger equation with the sextic operators in an optical fiber
    Lan, Zhong-Zhou
    Guo, Bo-Ling
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (09)
  • [46] Some generalized coupled nonlinear Schrodinger equations and conservation laws
    Liu, Wei
    Geng, Xianguo
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2017, 31 (32):
  • [47] Self-adjointness and conservation laws of two variable coefficient nonlinear equations of Schrodinger type
    Zhang, Li-Hua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (03) : 453 - 463
  • [48] Conservation laws in higher-order nonlinear Schrodinger equations
    Kim, J
    Park, QH
    Shin, HJ
    PHYSICAL REVIEW E, 1998, 58 (05): : 6746 - 6751
  • [49] Soliton Solutions and Conservation Laws of a (3+1)-Dimensional Nonlinear Evolution Equation
    Ekici, M.
    Sonmezoglu, A.
    Adem, A. Rashid
    Zhou, Qin
    Luan, Zitong
    Liu, Sha
    Mirzazadeh, M.
    Liu, Wenjun
    ACTA PHYSICA POLONICA A, 2019, 135 (03) : 539 - 545
  • [50] Lax pair, conservation laws and solitons for a (2+1)-dimensional fourth-order nonlinear Schrodinger equation governing an α-helical protein
    Chai, Jun
    Tian, Bo
    Zhen, Hui-Ling
    Sun, Wen-Rong
    ANNALS OF PHYSICS, 2015, 362 : 671 - 683