Isotonic Modeling with Non-Differentiable Loss Functions with Application to Lasso Regularization

被引:6
|
作者
Painsky, Amichai [1 ]
Rosset, Saharon [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-6997801 Ramat Aviv, Israel
关键词
Isotonic regression; nonparametric regression; regularization path; GIRP; convex optimization; REGRESSION; FREEDOM;
D O I
10.1109/TPAMI.2015.2441063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present an algorithmic approach for fitting isotonic models under convex, yet non-differentiable, loss functions. It is a generalization of the greedy non-regret approach proposed by Luss and Rosset (2014) for differentiable loss functions, taking into account the sub-gradiental extensions required. We prove that our suggested algorithm solves the isotonic modeling problem while maintaining favorable computational and statistical properties. As our suggested algorithm may be used for any non-differentiable loss function, we focus our interest on isotonic modeling for either regression or two-class classification with appropriate log-likelihood loss and lasso penalty on the fitted values. This combination allows us to maintain the non-parametric nature of isotonic modeling, while controlling model complexity through regularization. We demonstrate the efficiency and usefulness of this approach on both synthetic and real world data. An implementation of our suggested solution is publicly available from the first author's website (https://sites.google.com/site/amichaipainsky/software).
引用
收藏
页码:308 / 321
页数:14
相关论文
共 50 条
  • [41] Punzi-loss:a non-differentiable metric approximation for sensitivity optimisation in the search for new particles
    F. Abudinén
    M. Bertemes
    S. Bilokin
    M. Campajola
    G. Casarosa
    S. Cunliffe
    L. Corona
    M. De Nuccio
    G. De Pietro
    S. Dey
    M. Eliachevitch
    P. Feichtinger
    T. Ferber
    J. Gemmler
    P. Goldenzweig
    A. Gottmann
    E. Graziani
    H. Haigh
    M. Hohmann
    T. Humair
    G. Inguglia
    J. Kahn
    T. Keck
    I. Komarov
    J.-F. Krohn
    T. Kuhr
    S. Lacaprara
    K. Lieret
    R. Maiti
    A. Martini
    F. Meier
    F. Metzner
    M. Milesi
    S.-H. Park
    M. Prim
    C. Pulvermacher
    M. Ritter
    Y. Sato
    C. Schwanda
    W. Sutcliffe
    U. Tamponi
    F. Tenchini
    P. Urquijo
    L. Zani
    R. Žlebčík
    A. Zupanc
    The European Physical Journal C, 2022, 82
  • [42] Non-Differentiable Loss Function Optimization and Interaction Effect Discovery in Insurance Pricing Using the Genetic Algorithm
    Van Oirbeek, Robin
    Vandervorst, Felix
    Bury, Thomas
    Willame, Gireg
    Grumiau, Christopher
    Verdonck, Tim
    RISKS, 2024, 12 (05)
  • [43] Anomaly detection in time-series data using evolutionary neural architecture search with non-differentiable functions
    Gomez-Rosero, Santiago
    Capretz, Miriam A. M.
    APPLIED SOFT COMPUTING, 2024, 155
  • [44] Slope and G-sets characterization of set-valued functions and applications to non-differentiable optimization problems
    Scherzer, O
    Yin, WT
    Osher, S
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2005, 3 (04) : 479 - 492
  • [45] Time-dependent reliability analysis for non-differentiable limit state functions due to discrete load processes
    Qiao, Hao-Peng
    Lu, Zhao-Hui
    Li, Chun-Qing
    Cai, Chao-Huang
    Wang, Cao
    STRUCTURAL SAFETY, 2025, 114
  • [46] Fuzzy modeling and control of a class of non-differentiable multi-input multi-output nonlinear systems
    Zare, Kazem
    Shasadeghi, Mokhtar
    Izadian, Afshin
    Niknam, Taher
    Asemani, Mohammad Hassan
    ASIAN JOURNAL OF CONTROL, 2021, 24 (02) : 942 - 955
  • [48] Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian
    Marano, SA
    Motreanu, D
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (01) : 108 - 120
  • [49] Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions
    Jumarie, Guy
    APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 378 - 385
  • [50] SANE: strategic autonomous non-smooth exploration for multiple optima discovery in multi-modal and non-differentiable black-box functions
    Biswas, Arpan
    Vasudevan, Rama
    Pant, Rohit
    Takeuchi, Ichiro
    Funakubo, Hiroshi
    Liu, Yongtao
    DIGITAL DISCOVERY, 2025, 4 (03): : 853 - 867