Generalized Fibonacci numbers and Bernoulli polynomials

被引:0
|
作者
Shannon, Anthony G. [1 ]
Deveci, Omur [2 ]
Erdag, Ozgur [2 ]
机构
[1] Univ New South Wales, Warrane Coll, Kensington, NSW 2033, Australia
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Fibonacci polynomials; Difference operators; Generalized Fibonacci and Lucas numbers; Bernoulli numbers and polynomials;
D O I
10.7546/nntdm.2019.25.1.193-198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relationships, in terms of equations and congruences, are developed between the Bernoulli numbers and arbitrary order generalizations of the ordinary Fibonacci and Lucas numbers. Some of these are direct connections and others are analogous similarities.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [41] Some Generalized Fibonacci Polynomials
    Shattuck, Mark A.
    Wagner, Carl G.
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (05)
  • [42] The integrality of the values of Bernoulli polynomials and of generalised Bernoulli numbers
    Clarke, F
    Slavutskii, IS
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 22 - 24
  • [43] NEW RELATIONS BETWEEN FIBONACCI AND BERNOULLI NUMBERS
    BYRD, PF
    FIBONACCI QUARTERLY, 1975, 13 (01): : 59 - 69
  • [44] On generalized Fibonacci and Lucas polynomials
    Nalli, Ayse
    Haukkanen, Pentti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3179 - 3186
  • [45] Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Hanyoung
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [46] Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Hanyoung Kim
    Advances in Difference Equations, 2021
  • [47] Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers
    Onishi, Y.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (05) : 871 - 932
  • [48] An Identity for Generalized Bernoulli Polynomials
    Chellal, Redha
    Bencherif, Farid
    Mehbali, Mohamed
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (11)
  • [49] Formulas for convolution Fibonacci numbers and polynomials
    Liu, GD
    FIBONACCI QUARTERLY, 2002, 40 (04): : 352 - 357
  • [50] Fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Park, Jin-Woo
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 604 - 614