The lower bound on independence number

被引:0
|
作者
Li, YS [1 ]
Rousseau, CC
Zang, W
机构
[1] Hohai Univ, Dept Math, Nanjing 210098, Peoples R China
[2] Univ Memphis, Dept Mat Sci, Memphis, TN 38152 USA
[3] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
independence number; discrete form; weighted graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with degree sequence (d(v)). If the maximum degree of any subgraph induced by a neighborhood of G is at most m, then the independence number of G is at least Sigma(v)f(m+1)(d(v)), where f(m+1) (x) is a function greater than log(x/(m+1))-1/x for x>0. For a weighted graph G = (V, E, w), we prove that its weighted independence number (the maximum sum of the weights of an independent set in G) is at least Sigma(v)w(v)/1+d(v), where w, is the weight of v.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 50 条
  • [31] A LOWER BOUND OF NUMBER OF THRESHOLD FUNCTIONS
    YAJIMA, S
    IBARAKI, T
    IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (06): : 926 - &
  • [32] A Lower Bound for the Number of Elastic Collisions
    Krzysztof Burdzy
    Mauricio Duarte
    Communications in Mathematical Physics, 2019, 372 : 679 - 711
  • [33] An Asymptotic Lower Bound on the Number of Polyominoes
    Bui, Vuong
    ANNALS OF COMBINATORICS, 2024, 28 (01) : 223 - 256
  • [34] LOWER BOUND OF NUMBER OF THRESHOLD FUNCTIONS
    MUROGA, S
    TODA, I
    IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1966, EC15 (05): : 805 - +
  • [35] A lower bound for the rectilinear crossing number
    Abrego, BM
    Fernández-Merchant, S
    GRAPHS AND COMBINATORICS, 2005, 21 (03) : 293 - 300
  • [36] A LOWER BOUND FOR NUMBER OF VERTICES OF A GRAPH
    WATKINS, ME
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (03): : 297 - &
  • [37] A lower bound on tunnel number degeneration
    Schirmer, Trenton
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (03): : 1279 - 1308
  • [38] A lower bound on the zero forcing number
    Davila, Randy
    Kalinowski, Thomas
    Stephen, Sudeep
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 363 - 367
  • [39] On the topological lower bound for the multichromatic number
    Csorba, Peter
    Osztenyi, Jozsef
    DISCRETE MATHEMATICS, 2010, 310 (08) : 1334 - 1339
  • [40] A LOWER BOUND FOR THE INTERVAL NUMBER OF A GRAPH
    MAAS, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (01) : 65 - 69