Redefined fuzzy B-algebras

被引:2
|
作者
Zarandi Baghini, A. [1 ]
Borumand Saeid, A. [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Kerman Branch, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
关键词
B-algebra; (alpha; beta)-Fuzzy subalgebra; Fuzzy point;
D O I
10.1007/s10700-008-9045-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By two relations belonging to (∈) and quasi-coincidence (q) between fuzzy points and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, {β are any two of ∈, q, ∈ ∨ q, ∈ ∧ q} with α≠ ∈ ∧ q . We state and prove some theorems in (α, β)-fuzzy B-algebras. © 2008 Springer Science+Business Media, LLC.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [21] Limits of Quantum B-Algebras
    Gan, Aiping
    Muzammal, Aziz
    Yang, Yichuan
    MATHEMATICS, 2021, 9 (24)
  • [22] Free commutative B-algebras
    Sebandal, A.N.
    Vilela, Jocelyn P.
    Sebandal, A.N. (1alfilgen@gmail.com), 1600, Forum-Editrice Universitaria Udinese SRL (44): : 198 - 207
  • [23] PREHERMITIAN ELEMENTS AND B-ALGEBRAS
    BERKSON, E
    MATHEMATISCHE ANNALEN, 1972, 195 (03) : 192 - &
  • [24] Quantum B-algebras with involutions
    Ciungu, Lavinia Corina
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (12)
  • [25] The Unitality of Quantum B-algebras
    Han, Shengwei
    Xu, Xiaoting
    Qin, Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (05) : 1582 - 1590
  • [26] CHARACTERIZATION OF DUAL B B-ALGEBRAS
    MCCHAREN, EA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) : 84 - 84
  • [27] ANOTHER AXIOMATIZATION OF B-ALGEBRAS
    Kim, Chang Bum
    Kim, Hee Sik
    DEMONSTRATIO MATHEMATICA, 2008, 41 (02) : 259 - 262
  • [28] Free commutative B-algebras
    Sebandal, A. N.
    Vilela, Jocelyn P.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 208 - 223
  • [29] Dual quantum B-algebras
    Fangfang Pan
    Soft Computing, 2019, 23 : 6813 - 6817
  • [30] A Few Notes on Quantum B-algebras
    Shengwei Han
    Xiaoting Xu
    Studia Logica, 2021, 109 : 1423 - 1440