Low-loss integrated photonics for the blue and ultraviolet regime

被引:82
|
作者
West, Gavin N. [1 ]
Loh, William [2 ]
Kharas, Dave [2 ]
Sorace-Agaskar, Cheryl [2 ]
Mehta, Karan K. [1 ]
Sage, Jeremy [2 ]
Chiaverini, John [2 ]
Ram, Rajeev J. [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Lexington, MA 02421 USA
基金
美国国家科学基金会;
关键词
ATOMIC LAYER DEPOSITION; WAVE-GUIDES; TEMPERATURE-DEPENDENCE; AL2O3; ALUMINUM; BEHAVIOR; PLATFORM; PROBES; SI3N4; FILMS;
D O I
10.1063/1.5052502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a low-loss integrated photonics platform in the visible and near ultraviolet (UV) regime. Fully etched waveguides based on atomic layer deposition (ALD) of aluminum oxide operate in a single transverse mode with <3 dB/cm propagation loss at a wavelength of 371 nm. Ring resonators with intrinsic quality factors exceeding 470 000 are demonstrated at 405 nm, and the thermo-optic coefficient of ALD aluminum oxide is estimated to be 2.75 x 10(-5) (RIU/degrees C). Absorption loss is sufficiently low to allow on-resonance operation with intra-cavity powers up to at least 12.5 mW, limited by available laser power. Experimental and simulated data indicate that the propagation loss is dominated by sidewall roughness, suggesting that lower loss in the blue and UV is achievable. (C) 2019 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability
    Zhu, Shiyang
    Lo, G. Q.
    Kwong, D. L.
    OPTICS EXPRESS, 2010, 18 (24): : 25283 - 25291
  • [22] Void-free upper cladding deposition process for low-loss integrated silicon nitride photonics
    Mumlyakov, Alexandr M.
    Dmitriev, Nikita Yu.
    V. Shibalov, Maksim
    Filippov, Ivan A.
    V. Trofimov, Igor
    Danilin, Andrei N.
    Lobanov, Valery E.
    Bilenko, Igor A.
    Tarkhov, Michael A.
    PHYSICAL REVIEW APPLIED, 2024, 22 (05):
  • [23] Seeing blue: Pushing integrated photonics into the ultraviolet with ALD aluminum oxide
    West, Gavin N.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIV, 2020, 11283
  • [24] Low-loss flexible bilayer metamaterials in THz regime
    Woo, Jeong Min
    Kim, Dongju
    Hussain, Sajid
    Jang, Jae-Hyung
    OPTICS EXPRESS, 2014, 22 (03): : 2289 - 2298
  • [25] Low-Loss and Highly Reliable Low-Profile Coupler for Silicon Photonics
    Kumagai, Tsutaru
    Nakanishi, Tetsuya
    Hayashi, Tetsuya
    Takahashi, Kenichiro
    Shiozaki, Manabu
    Kataoka, Atsushi
    Murakami, Takashi
    Sano, Tomomi
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [26] LOW-LOSS BENDS FOR INTEGRATED-OPTICS
    RAMASWAMY, V
    DIVINO, MD
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1981, 17 (12) : 142 - 142
  • [27] Low-loss silica on silicon integrated waveguides
    Maker, Ashley J.
    Armani, Andrea M.
    HIGH CONTRAST METASTRUCTURES, 2012, 8270
  • [28] LOW-LOSS INTEGRATED OPTICAL-WAVEGUIDES
    MARSHALL, S
    SOLID STATE TECHNOLOGY, 1984, 27 (06) : 165 - 165
  • [29] Integrated low-loss balun for Vivaldi antennas
    Reid, E. W.
    Ortiz-Balbuena, L.
    Moez, K.
    ELECTRONICS LETTERS, 2009, 45 (09) : 442 - 443
  • [30] Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
    Chen, Rui
    Tara, Virat
    Dutta, Jayita
    Fang, Zhuoran
    Zheng, Jiajiu
    Majumdar, Arka
    JOURNAL OF OPTICAL MICROSYSTEMS, 2024, 4 (03):