A Wearable and Highly Sensitive Textile-based Pressure Sensor with Ti3C2Tx Nanosheets

被引:40
|
作者
An, Jialong [1 ]
Ma, Yanan [1 ]
He, Mingquan [1 ]
Yan, Jinfeng [1 ]
Zhang, Chuankun [1 ]
Li, Xingxing [1 ]
Shen, Peizhi [1 ]
Luo, Shijun [1 ]
Gao, Yihua [2 ,3 ]
机构
[1] Hubei Univ Automot Technol, Sch Sci, Shiyan 442002, Peoples R China
[2] Huazhong Univ Sci & Technol HUST, Ctr Nanoscale Characterizat & Devices CNCD, Sch Phys, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Peoples R China
[3] Guilin Univ Technol, Coll Mat Sci & Engn, Guangxi Key Lab Opt & Elect Mat & Devices, Guilin 541004, Peoples R China
关键词
2D; Ti3C2Tx; textile; dipping-drying; sensor; STRAIN SENSOR; ELECTRONIC SKIN;
D O I
10.1016/j.sna.2020.112081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Development of low-cost, efficient, flexible and highly sensitive pressure sensors that can perceive and respond to environmental stimuli have become indispensable for wearable electronics. Herein, the Ti3C2Tx-textile based pressure sensor was successfully fabricated with the help of common fabric substrates by using simple and effective dipping-drying method. The Ti3C2Tx Nanosheets prepared by wet-chemical solution display excellent hydrophilicity, high specific surface area, metallic conductivity and controllable surface groups properties, which are extremely suitable in construction of low-cost and high-performance textile-based pressure sensors. And the Ti3C2Tx-textile based pressure sensor achieves high sensitivity (19.78 kPa(-1)), low detection limit (219 mN), fast response (similar to 149 ms) and well stability (more than 7000). With these merits, the Ti3C2Tx-textile based sensor is demonstrated to be able to recognize the human physiological signals, such as finger bending, tapping, hand movements and so on. Furthermore, the textile sensor also can be capable to measure pressure distribution and distinguish the subtle strain, which demonstrates great potential in both industrial and biomedical applications. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films
    Touseef Habib
    Xiaofei Zhao
    Smit A. Shah
    Yexiao Chen
    Wanmei Sun
    Hyosung An
    Jodie L. Lutkenhaus
    Miladin Radovic
    Micah J. Green
    npj 2D Materials and Applications, 3
  • [32] Ti3C2Tx MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators
    Nam, Sanghee
    Kim, Jong-Nam
    Oh, Saewoong
    Kim, Jaehwan
    Ahn, Chi Won
    Oh, Il-Kwon
    APL MATERIALS, 2020, 8 (11)
  • [33] Controlled Growth of Silver Nanowires with Chemically Exfoliated Ti3C2Tx Nanosheets
    Liu, Jianfang
    Zhao, Haocheng
    Liang, Fangnan
    You, Xuerui
    Zhou, Kun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (10):
  • [34] Antimicrobial Mode-of-Action of Colloidal Ti3C2TX MXene Nanosheets
    Shamsabadi, Ahmad Arabi
    Gh, Mohammad Sharifian
    Anasori, Babak
    Soroush, Masoud
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16586 - 16596
  • [35] Flexible Wearable Ti3C2Tx Composite Carbon Fabric Textile with Infrared Stealth and Electromagnetic Interference Shielding Effect
    Chen, Mingxing
    Jiang, Xinpeng
    Huang, Jie
    Yang, Junbo
    Wu, Jiagui
    Liang, Yiming
    Wang, Tianwu
    Yan, Peiguang
    ADVANCED OPTICAL MATERIALS, 2024, 12 (04)
  • [36] Plasmonic Ti3C2TX MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device
    Fan, Xiangqian
    Ding, Yan
    Liu, Yang
    Liang, Jiajie
    Chen, Yongsheng
    ACS NANO, 2019, 13 (07) : 8124 - 8134
  • [37] Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets
    Pendyala, Prashant
    Lee, Juyun
    Kim, Seon Joon
    Yoon, Eui-Sung
    APPLIED SURFACE SCIENCE, 2022, 603
  • [38] Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films
    Habib, Touseef
    Zhao, Xiaofei
    Shah, Smit A.
    Chen, Yexiao
    Sun, Wanmei
    An, Hyosung
    Lutkenhaus, Jodie L.
    Radovic, Miladin
    Green, Micah J.
    NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [39] Capacitance performance of Ti3C2Tx MXene nanosheets on alkaline and neutral electrolytes
    Murugesan, Ramesh Aravind
    Raja, Krishna Chandar Nagamuthu
    MATERIALS RESEARCH BULLETIN, 2023, 163
  • [40] Friction of Ti3C2Tx MXenes
    Serles, Peter
    Hamidinejad, Mahdi
    Demingos, Pedro Guerra
    Ma, Li
    Barri, Nima
    Taylor, Hayden
    Singh, Chandra Veer
    Park, Chul B.
    Filleter, Tobin
    NANO LETTERS, 2022, 22 (08) : 3356 - 3363