IDENTIFIABILITY OF SECOND-ORDER MULTIDIMENSIONAL ICA

被引:0
|
作者
Lahat, Dana [1 ]
Cardoso, Jean-Francois [2 ,3 ]
Messer, Hagit [1 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] TELECOM ParisTech, F-75013 Paris, France
[3] CNRS, F-75013 Paris, France
关键词
Joint block diagonalization; identifiability; uniqueness; multidimensional ICA; SUBSPACE ANALYSIS; SEPARATION; MATRIX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the identifiability of second-order blind separation of multidimensional components. By maximizing the likelihood for piecewise-stationary Gaussian data, we obtain that the maximum likelihood (ML) solution is equivalent to joint block diagonalization (JBD) of the sample covariance matrices of the observations. Small-error analysis of the solution indicates that the identifiability of the model depends on the positive-definiteness of a matrix, which is a function of the latent source covariance matrices. By analysing this matrix, we derive necessary and sufficient conditions for the model to be identifiable. These are also the sufficient and necessary conditions for JBD of any set of real positive-definite symmetric matrices to be unique.
引用
收藏
页码:1875 / 1879
页数:5
相关论文
共 50 条
  • [31] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116
  • [32] On the blind identifiability of orthogonal space-time block codes from second-order statistics
    Via, Javier
    Santamaria, Ignacio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 709 - 722
  • [33] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [34] JOINT BLIND SOURCE SEPARATION FROM SECOND-ORDER STATISTICS: NECESSARY AND SUFFICIENT IDENTIFIABILITY CONDITIONS
    Via, Javier
    Anderson, Matthew
    Li, Xi-Lin
    Adali, Tuelay
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2520 - 2523
  • [35] Identifiability of BPSK, MSK and QPSK FIR SISO channels from modified second-order statistics
    Delmas, J-P.
    Comon, P.
    Meurisse, Y.
    2006 IEEE 7TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2006, : 94 - 98
  • [36] Multidimensional ARKN methods for general oscillatory second-order initial value problems
    Liu, Kai
    Wu, Xinyuan
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (07) : 1999 - 2007
  • [37] A Multidimensional Version of the Darboux Problem for a Model Degenerating Second-Order Hyperbolic Equation
    S. S. Kharibegashvili
    Differential Equations, 2004, 40 : 610 - 619
  • [38] Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation
    Minghua Chen
    Yantao Wang
    Xiao Cheng
    Weihua Deng
    BIT Numerical Mathematics, 2014, 54 : 623 - 647
  • [39] Competencies for a Healthy Physically Active Lifestyle: Second-Order Analysis and Multidimensional Scaling
    Carl, Johannes
    Sudeck, Gorden
    Pfeifer, Klaus
    FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [40] Multidimensional Diffusion-Wave-Type Solutions to the Second-Order Evolutionary Equation
    Kazakov, Alexander
    Lempert, Anna
    MATHEMATICS, 2024, 12 (02)