Ehresmann connections and feedforward neural networks

被引:0
|
作者
Pearson, DW [1 ]
机构
[1] EMA, LGI2P, Nonlinear & Uncertain Syst Grp, F-30035 Nimes 1, France
关键词
Ehresmann connections; feedforward neural networks; vertical vector fields;
D O I
10.1016/S0895-7177(99)00078-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe how Ehresmann connections can be used to study certain properties of feedforward neural networks. Essentially, we calculate a Lie group approximation to the structure of the inverse image set above a certain point in the output space and this structure can then be locally transported to the inverse image above a, neighbouring point in the output space by means of an Ehresmann connection. This enables us to find a continuous approximation to the underlying topological structure of the data from discrete data pairs (input/output pairs). (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [21] Injecting Chaos in Feedforward Neural Networks
    Sultan Uddin Ahmed
    Md. Shahjahan
    Kazuyuki Murase
    Neural Processing Letters, 2011, 34 : 87 - 100
  • [22] A New Formulation for Feedforward Neural Networks
    Razavi, Saman
    Tolson, Bryan A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (10): : 1588 - 1598
  • [23] A NEW MODEL OF FEEDFORWARD NEURAL NETWORKS
    WANG, DX
    TAI, JW
    PHYSICS LETTERS A, 1992, 162 (01) : 41 - 44
  • [24] Interpolation representation of feedforward neural networks
    Li, HX
    Li, LX
    Wang, JY
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (7-8) : 829 - 847
  • [25] Quantum generalisation of feedforward neural networks
    Wan, Kwok Ho
    Dahlsten, Oscar
    Kristjansson, Hler
    Gardner, Robert
    Kim, M. S.
    NPJ QUANTUM INFORMATION, 2017, 3
  • [26] Injecting Chaos in Feedforward Neural Networks
    Ahmed, Sultan Uddin
    Shahjahan, Md.
    Murase, Kazuyuki
    NEURAL PROCESSING LETTERS, 2011, 34 (01) : 87 - 100
  • [27] Topology of Learning in Feedforward Neural Networks
    Gabella, Maxime
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3588 - 3592
  • [28] On the fault tolerance of feedforward neural networks
    Huazhong Ligong Daxue Xuebao, SUPPL. 2 (22-24):
  • [29] Function evaluation with feedforward neural networks
    Logan, D
    Argyrakis, P
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 67 (1-2) : 201 - 222
  • [30] A Modified Algorithm for Feedforward Neural Networks
    夏战国
    管红杰
    李政伟
    孟斌
    Journal of China University of Mining & Technology, 2002, (01) : 104 - 108