Ehresmann connections and feedforward neural networks

被引:0
|
作者
Pearson, DW [1 ]
机构
[1] EMA, LGI2P, Nonlinear & Uncertain Syst Grp, F-30035 Nimes 1, France
关键词
Ehresmann connections; feedforward neural networks; vertical vector fields;
D O I
10.1016/S0895-7177(99)00078-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe how Ehresmann connections can be used to study certain properties of feedforward neural networks. Essentially, we calculate a Lie group approximation to the structure of the inverse image set above a certain point in the output space and this structure can then be locally transported to the inverse image above a, neighbouring point in the output space by means of an Ehresmann connection. This enables us to find a continuous approximation to the underlying topological structure of the data from discrete data pairs (input/output pairs). (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] An Improved Time Feedforward Connections Recurrent Neural Networks
    Wang, Jin
    Zou, Yongsong
    Lim, Se -Jung
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 2743 - 2755
  • [2] Automorphisms of Ehresmann connections
    Pek, J.
    Szilasi, J.
    ACTA MATHEMATICA HUNGARICA, 2009, 123 (04) : 379 - 395
  • [3] Multiplicative Ehresmann connections
    Fernandes, Rui Loja
    Marcut, Ioan
    ADVANCES IN MATHEMATICS, 2023, 427
  • [4] Automorphisms of Ehresmann connections
    J. Pék
    J. Szilasi
    Acta Mathematica Hungarica, 2009, 123 : 379 - 395
  • [5] EHRESMANN CONNECTIONS FOR FOLIATIONS
    BLUMENTHAL, RA
    HEBDA, JJ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (04) : 597 - 611
  • [6] Ehresmann connections for Lagrangian foliations
    Wolak, RA
    JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (04) : 310 - 320
  • [8] Covariant derivatives for Ehresmann connections
    Prince, G. E.
    Saunders, D. J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [9] ON TRAINING FEEDFORWARD NEURAL NETWORKS
    KAK, S
    PRAMANA-JOURNAL OF PHYSICS, 1993, 40 (01): : 35 - 42
  • [10] The capacity of feedforward neural networks
    Baldi, Pierre
    Vershynin, Roman
    NEURAL NETWORKS, 2019, 116 : 288 - 311