Fast algorithms to compute matrix-vector products for Toeplitz and Hankel matrices

被引:0
|
作者
Cariow, Aleksandr [1 ]
Gliszczynski, Marek [1 ]
机构
[1] W Pomeranian Univ Technol, Dept Comp Architectures & Telecommun, Szczecin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 08期
关键词
Fast algorithms; matrix-vector product; Toeplitzmatrix; Hankel matrix;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents practical and effective algorithms to calculate the Toeplitz/Hankel matrix by a vector product that are recursiveless modification of Karatsuba's method. Unlike traditional algorithms, in this case using the FFT is not required. Realization of the developed algorithms involves the use of unconventional ways of choosing the elements of the initial transformation matrix during the formation of an array of data to be processed. We have called these methods respectively "7-order" technique and "mirrored 7-order" technique. This approach allows us to calculate the vector-matrix products in parallel way with a reduced number of hardware multipliers and adders.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [31] OPTICAL MATRIX-VECTOR MULTIPLIER FOR SIMPLE MATRICES
    COLLINS, SA
    HABIBY, SF
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (12): : 1295 - 1296
  • [32] Fast algorithms for centro-symmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices
    Heinig, G
    Rost, K
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 305 - 317
  • [33] Fast Algorithms for Centro-Symmetric and Centro-Skewsymmetric Toeplitz-Plus-Hankel Matrices
    Georg Heinig
    Karla Rost
    Numerical Algorithms, 2003, 33 : 305 - 317
  • [34] Fast curvature matrix-vector products for second-order gradient descent
    Schraudolph, NN
    NEURAL COMPUTATION, 2002, 14 (07) : 1723 - 1738
  • [35] Efficient computation of matrix-vector products with full observation weighting matrices in data assimilation
    Hu, Guannan
    Dance, Sarah L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) : 4101 - 4121
  • [36] Structured matrix recovery from matrix-vector products
    Halikias, Diana
    Townsend, Alex
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (01)
  • [37] The fast reduced QMC matrix-vector product
    Dick, Josef
    Ebert, Adrian
    Herrmann, Lukas
    Kritzer, Peter
    Longo, Marcello
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [38] Universally Decodable Matrices for Distributed Matrix-Vector Multiplication
    Ramamoorthy, Aditya
    Tang, Li
    Vontobel, Pascal O.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1777 - 1781
  • [39] Restarted GMRES with inexact matrix-vector products
    Sleijpen, GLG
    van den Eshof, J
    van Gijzen, MB
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 494 - 502
  • [40] Efficient multiplier based on hybrid approach for Toeplitz matrix-vector product
    Chang, Ku-Young
    Park, Sun-Mi
    Hong, Dowon
    Seo, Changho
    INFORMATION PROCESSING LETTERS, 2018, 131 : 33 - 38