On the Sample Complexity of the Linear Quadratic Regulator

被引:196
|
作者
Dean, Sarah [1 ]
Mania, Horia [1 ]
Matni, Nikolai [2 ]
Recht, Benjamin [1 ]
Tu, Stephen [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Optimal control; Robust control; System identification; Statistical learning theory; Reinforcement learning; System level synthesis; SYSTEM-IDENTIFICATION; BOUNDS; CONVERGENCE; RATES;
D O I
10.1007/s10208-019-09426-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper addresses the optimal control problem known as the linear quadratic regulator in the case when the dynamics are unknown. We propose a multistage procedure, calledCoarse-ID control, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis calledSystem Level Synthesisthat enables robust control design by solving a quasi-convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.
引用
收藏
页码:633 / 679
页数:47
相关论文
共 50 条
  • [31] Jump linear quadratic regulator with controlled jump rates
    Boukas, EK
    Liu, ZK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) : 301 - 305
  • [32] THE LINEAR-QUADRATIC OPTIMAL REGULATOR FOR DESCRIPTOR SYSTEMS
    BENDER, DJ
    LAUB, AJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (08) : 672 - 688
  • [33] Robust linear quadratic regulator applied to an inverted pendulum
    Escalante, Felix M.
    Jutinico, Andres L.
    Terra, Marco H.
    Siqueira, Adriano A. G.
    ASIAN JOURNAL OF CONTROL, 2023, 25 (04) : 2564 - 2576
  • [34] Linear Quadratic Regulator: II. Robust Formulations
    M. V. Khlebnikov
    P. S. Shcherbakov
    Automation and Remote Control, 2019, 80 : 1847 - 1860
  • [35] Linear Quadratic Regulator: II. Robust Formulations
    Khlebnikov, M., V
    Shcherbakov, P. S.
    AUTOMATION AND REMOTE CONTROL, 2019, 80 (10) : 1847 - 1860
  • [36] Linear Quadratic Regulator Based Bumpless Transfer in Microgrids
    Das, Dibakar
    Gurrala, Gurunath
    Shenoy, U. Jayachandra
    2016 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2016, : 617 - 617
  • [37] Variable Gain Linear Quadratic Regulator and Its Application
    Zhang, Yongli
    Song, Lifang
    Zhao, Guoliang
    Liu, Liying
    Yao, Qingmei
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 1745 - 1750
  • [38] SOME REMARKS ON THE PERIODIC LINEAR QUADRATIC REGULATOR PROBLEM
    DAPRATO, G
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 154 : 43 - 51
  • [39] Accelerated optimization landscape of linear-quadratic regulator☆
    Feng, Lechen
    Ni, Yuan-Hua
    AUTOMATICA, 2025, 171
  • [40] Synthesis of a regulator for a linear quadratic optimal control problem
    Gabasov, R
    Lubochkin, AV
    AUTOMATION AND REMOTE CONTROL, 1997, 58 (09) : 1403 - 1413