N2O changes from the Last Glacial Maximum to the preindustrial - Part 2: terrestrial N2O emissions and carbon-nitrogen cycle interactions

被引:9
|
作者
Joos, Fortunat [1 ,2 ]
Spahni, Renato [1 ,2 ]
Stocker, Benjamin D. [3 ,4 ]
Lienert, Sebastian [1 ,2 ]
Mueller, Jurek [1 ,2 ]
Fischer, Hubertus [1 ,2 ]
Schmitt, Jochen [1 ,2 ]
Prentice, I. Colin [5 ,6 ,7 ]
Otto-Bliesner, Bette [8 ]
Liu, Zhengyu [9 ]
机构
[1] Univ Bern, Phys Inst, Climate & Environm Phys, CH-3012 Bern, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[3] ETH, Dept Environm Syst Sci, Univ Str 2, CH-8092 Zurich, Switzerland
[4] Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland
[5] Imperial Coll London, Dept Life Sci, AXA Chair Biosphere & Climate Impacts, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England
[6] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modelling, Minist Educ, Beijing 100084, Peoples R China
[7] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia
[8] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[9] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
基金
美国国家科学基金会; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
WATER-USE EFFICIENCY; ICE-CORE RECORDS; CLIMATE-CHANGE; OXIDE EMISSIONS; METHANE EMISSIONS; NITRIFIER DENITRIFICATION; PHOSPHORUS LIMITATION; NUTRIENT COMPETITION; CO2; FERTILIZATION; VEGETATION MODEL;
D O I
10.5194/bg-17-3511-2020
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Carbon-nitrogen (C-N) interactions regulate N availability for plant growth and for emissions of nitrous oxide (N2O) and the uptake of carbon dioxide. Future projections of these terrestrial greenhouse gas fluxes are strikingly divergent, leading to major uncertainties in projected global warming. Here we analyse the large increase in terrestrial N2O emissions over the past 21 000 years as reconstructed from ice-core isotopic data and presented in part 1 of this study. Remarkably, the increase occurred in two steps, each realized over decades and within a maximum of 2 centuries, at the onsets of the major deglacial Northern Hemisphere warming events. The data suggest a highly dynamic and responsive global N cycle. The increase may be explained by an increase in the flux of reactive N entering and leaving ecosystems or by an increase in N2O yield per unit N converted. We applied the LPX-Bern dynamic global vegetation model in deglacial simulations forced with Earth system model climate data to investigate N2O emission patterns, mechanisms, and C-N coupling. The N2O emission changes are mainly attributed to changes in temperature and precipitation and the loss of land due to sea-level rise. LPX-Bern simulates a deglacial increase in N2O emissions but underestimates the reconstructed increase by 47 %. Assuming time-independent N sources in the model to mimic progressive N limitation of plant growth results in a decrease in N2O emissions in contrast to the reconstruction. Our results appear consistent with suggestions of (a) biological controls on ecosystem N acquisition and (b) flexibility in the coupling of the C and N cycles during periods of rapid environmental change. A dominant uncertainty in the explanation of the reconstructed N2O emissions is the poorly known N2O yield per N lost through gaseous pathways and its sensitivity to soil conditions. The deglacial N2O record provides a constraint for future studies.
引用
收藏
页码:3511 / 3543
页数:33
相关论文
共 50 条
  • [21] NOx AND N2O EMISSIONS FROM SOIL
    Williams, E.
    Hutchinson, G.
    Fehsenfeld, F.
    GLOBAL BIOGEOCHEMICAL CYCLES, 1992, 6 (04) : 351 - 388
  • [22] N2O emissions from global transportation
    Wallington, T. J.
    Wiesen, P.
    ATMOSPHERIC ENVIRONMENT, 2014, 94 : 258 - 263
  • [23] Global trends and uncertainties in terrestrial denitrification and N2O emissions
    Bouwman, A. F.
    Beusen, A. H. W.
    Griffioen, J.
    Van Groenigen, J. W.
    Hefting, M. M.
    Oenema, O.
    Van Puijenbroek, P. J. T. M.
    Seitzinger, S.
    Slomp, C. P.
    Stehfest, E.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1621)
  • [24] Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics
    Marcel Suleiman
    Franziska B. Brandt
    Kristof Brenzinger
    Guntars O. Martinson
    Gesche Braker
    Microbial Ecology, 2017, 73 : 751 - 754
  • [25] Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics
    Suleiman, Marcel
    Brandt, Franziska B.
    Brenzinger, Kristof
    Martinson, Guntars O.
    Braker, Gesche
    MICROBIAL ECOLOGY, 2017, 73 (04) : 751 - 754
  • [26] N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations
    Senbayram, M.
    Chen, R.
    Budai, A.
    Bakken, L.
    Dittert, K.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2012, 147 : 4 - 12
  • [27] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    Ciarlo, E.
    Conti, M.
    Bartoloni, N.
    Rubio, G.
    BIOLOGY AND FERTILITY OF SOILS, 2008, 44 (07) : 991 - 995
  • [28] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    E. Ciarlo
    M. Conti
    N. Bartoloni
    G. Rubio
    Biology and Fertility of Soils, 2008, 44 : 991 - 995
  • [29] The effects of nitrogen fertilization on N2O emissions from a rubber plantation
    Wen-Jun Zhou
    Hong-li Ji
    Jing Zhu
    Yi-Ping Zhang
    Li-Qing Sha
    Yun-Tong Liu
    Xiang Zhang
    Wei Zhao
    Yu-xin Dong
    Xiao-Long Bai
    You-Xin Lin
    Jun-Hui Zhang
    Xun-Hua Zheng
    Scientific Reports, 6
  • [30] The effects of nitrogen fertilization on N2O emissions from a rubber plantation
    Zhou, Wen-Jun
    Ji, Hong-li
    Zhu, Jing
    Zhang, Yi-Ping
    Sha, Li-Qing
    Liu, Yun-Tong
    Zhang, Xiang
    Zhao, Wei
    Dong, Yu-xin
    Bai, Xiao-Long
    Lin, You-Xin
    Zhang, Jun-Hui
    Zheng, Xun-Hua
    SCIENTIFIC REPORTS, 2016, 6