Online semi-supervised support vector machine

被引:23
|
作者
Liu, Ying [1 ]
Xu, Zhen [1 ]
Li, Chunguang [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Support vector machine; Semi-supervised learning; Online learning; Classification; Least-square SVM; Manifold regularization; CLASSIFICATION; REGRESSION;
D O I
10.1016/j.ins.2018.01.048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, support vector machine (SVM) has received much attention due to its good performance and wide applicability. As a supervised learning algorithm, the standard SVM uses sufficient labeled data to obtain the optimal decision hyperplane. However, in many practical applications, it is difficult and/or expensive to obtain labeled data. Besides, the standard SVM is a batch learning algorithm. It is inefficient to handle streaming data as the classifier must be retrained from scratch whenever a new data is arrived. In this paper, we consider the online classification of streaming data when only a small portion of data are labeled while a large portion of data are unlabeled. In order to obtain an adaptive solution with relatively low computational complexity, a new form of manifold regularization is proposed. Then, an adaptive and online semi-supervised least square SVM is developed, which well exploits the information of new incoming labeled or unlabeled data to boost learning performance. Simulations on synthetic and real data sets show that the proposed algorithm achieves good classification performance even if there only exist a few labeled data. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 50 条
  • [21] Semi-supervised learning with Deep Laplacian Support Vector Machine
    Chen, Hangyu
    Xie, Xijiong
    Li, Di
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [22] Cost sensitive semi-supervised Laplacian support vector machine
    Wan, Jian-Wu
    Yang, Ming
    Chen, Yin-Juan
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2012, 40 (07): : 1410 - 1415
  • [23] Semi-supervised support vector machines
    Bennett, KP
    Demiriz, A
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 368 - 374
  • [24] A novel semi-supervised support vector machine with asymmetric squared loss
    Huimin Pei
    Qiang Lin
    Liran Yang
    Ping Zhong
    Advances in Data Analysis and Classification, 2021, 15 : 159 - 191
  • [25] Laplacian smooth twin support vector machine for semi-supervised classification
    Wei-Jie Chen
    Yuan-Hai Shao
    Ning Hong
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 459 - 468
  • [26] New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine
    Gu, Bin
    Yuan, Xiao-Tong
    Chen, Songcan
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1475 - 1484
  • [27] A Cost-Sensitive Semi-Supervised Support Vector Machine Algorithm
    Han, Min
    Wang, Zhao
    Sun, Zhaoxu
    Xu, Yongli
    Jiang, Nan
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 238 - 244
  • [28] Quintic spline smooth semi-supervised support vector classification machine
    Xiaodan Zhang
    Jinggai Ma
    Aihua Li
    Ang Li
    Journal of Systems Engineering and Electronics, 2015, 26 (03) : 626 - 632
  • [29] A novel semi-supervised support vector machine with asymmetric squared loss
    Pei, Huimin
    Lin, Qiang
    Yang, Liran
    Zhong, Ping
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (01) : 159 - 191
  • [30] Weighted Least Squares Support Vector Machine for Semi-supervised Classification
    Liu, Zhanwei
    Liu, Houquan
    Zhao, Zhikai
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 103 (01) : 797 - 808