Optimization of accelerated solvent extraction of ellagitannins in black raspberry seeds using artificial neural network coupled with genetic algorithm

被引:19
|
作者
Lee, Ga Eun [1 ,2 ,3 ]
Kim, Ryun Hee [1 ,2 ,3 ]
Lim, Taehwan [4 ]
Kim, Jaecheol [1 ,2 ,3 ]
Kim, Suna [5 ]
Kim, Hyoung-Geun [6 ,7 ]
Hwang, Keum Taek [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Food & Nutr, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Human Ecol, Seoul 08826, South Korea
[3] Seoul Natl Univ, BK21 FOUR Educ & Res Team Sustainable Food & Nutr, Seoul 08826, South Korea
[4] Tufts Univ, Dept Biomed Engn, 4 Colby St, Medford, MA 02155 USA
[5] Korea Natl Open Univ, Coll Nat Sci, Div Human Ecol, Seoul 03078, South Korea
[6] Kyung Hee Univ, Grad Sch Biotechnol, Yongin 17104, South Korea
[7] Kyung Hee Univ, Dept Oriental Med Biotechnol, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
Black raspberry seeds; Ellagitannin; Accelerated solvent extraction; Artificial neural network; Genetic algorithm; Optimization; SANGUIIN H-6; HYDROLYZABLE TANNINS; ELLAGIC ACID; ANTIOXIDANT; IDENTIFICATION; PEDUNCULAGIN; RECEPTOR; WINE; WOOD; L;
D O I
10.1016/j.foodchem.2022.133712
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study aimed to identify ellagitannins in black raspberry seeds (BRS) and to optimize accelerated solvent extraction of ellagitannins using an artificial neural network (ANN) coupled with genetic algorithm. Fifteen monomeric and dimeric ellagitannins were identified in BRS. For ANN modeling, extraction time, extraction temperature, and solvent concentration were set as input variables, and total ellagitannin content was set as output variable. The trained ANN had a mean squared error value of 0.0102 and a regression correlation coefficient of 0.9988. The predicted optimal extraction conditions for maximum total ellagitannin content were 63.7% acetone, 4.21 min, and 43.9 degrees C. The actual total ellagitannin content under the optimal extraction conditions was 13.4 +/- 0.0 mg/g dry weight, and the prediction error was 0.75 +/- 0.27%. This study is the first attempt to analyze the composition of ellagitannins in BRS and to determine optimal extraction conditions for maximum total ellagitannin content from BRS.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Rule extraction from neural network by genetic algorithm with Pareto optimization
    Markowska-Kaczmar, U
    Wnuk-Lipinski, P
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 450 - 455
  • [32] Optimization of accelerated solvent extraction of fatty acids from Coix seeds using chemometrics methods
    Xing Liu
    Kai Fan
    Wei-Guo Song
    Zheng-Wu Wang
    Journal of Food Measurement and Characterization, 2019, 13 : 1773 - 1780
  • [33] Optimization of accelerated solvent extraction of fatty acids from Coix seeds using chemometrics methods
    Liu, Xing
    Fan, Kai
    Song, Wei-Guo
    Wang, Zheng-Wu
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2019, 13 (03) : 1773 - 1780
  • [34] Optimization of Acrylic Dry Spinning Production Line by Using Artificial Neural Network and Genetic Algorithm
    Vadood, M.
    Semnani, D.
    Morshed, M.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (02) : 735 - 744
  • [35] Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method
    Zhang, Liqiang
    Li, Luoxing
    Wang, Shiuping
    Zhu, Biwu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (04) : 492 - 499
  • [36] Optimization of the gear ratios in automatic transmission systems using an artificial neural network and a genetic algorithm
    Shamekhi, Amir H.
    Bidgoly, Abbas
    Noureiny, Ebrahim N.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2014, 228 (11) : 1338 - 1343
  • [37] Modeling and Optimization of β-Cyclodextrin Production by Bacillus licheniformis using Artificial Neural Network and Genetic Algorithm
    Sanjari, Samaneh
    Naderifar, Abbas
    Pazuki, Gholamreza
    IRANIAN JOURNAL OF BIOTECHNOLOGY, 2013, 11 (04) : 223 - 232
  • [38] Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm
    Ilbeigi, Marjan
    Ghomeishi, Mohammad
    Dehghanbanadaki, Ali
    SUSTAINABLE CITIES AND SOCIETY, 2020, 61 (61)
  • [39] Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm
    Singh, Vineeta
    Khan, Mahvish
    Khan, Saif
    Tripathi, C. K. M.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (02) : 379 - 385
  • [40] Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network
    Magnier, Laurent
    Haghighat, Fariborz
    BUILDING AND ENVIRONMENT, 2010, 45 (03) : 739 - 746