Dual Encoder-Decoder Based Generative Adversarial Networks for Disentangled Facial Representation Learning

被引:8
|
作者
Hu, Cong [1 ,2 ,3 ]
Feng, Zhenhua [4 ,5 ]
Wu, Xiaojun [1 ,2 ]
Kittler, Josef [5 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Jiangsu, Peoples R China
[3] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Peoples R China
[4] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, Surrey, England
[5] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, Surrey, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Face; Gallium nitride; Generative adversarial networks; Training; Generators; Face recognition; Task analysis; Disentangled representation learning; encoder-decoder; generative adversarial networks; face synthesis; pose invariant face recognition; FACE RECOGNITION;
D O I
10.1109/ACCESS.2020.3009512
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To learn disentangled representations of facial images, we present a Dual Encoder-Decoder based Generative Adversarial Network (DED-GAN). In the proposed method, both the generator and discriminator are designed with deep encoder-decoder architectures as their backbones. To be more specific, the encoder-decoder structured generator is used to learn a pose disentangled face representation, and the encoder-decoder structured discriminator is tasked to perform real/fake classification, face reconstruction, determining identity and estimating face pose. We further improve the proposed network architecture by minimizing the additional pixel-wise loss defined by the Wasserstein distance at the output of the discriminator so that the adversarial framework can be better trained. Additionally, we consider face pose variation to be continuous, rather than discrete in existing literature, to inject richer pose information into our model. The pose estimation task is formulated as a regression problem, which helps to disentangle identity information from pose variations. The proposed network is evaluated on the tasks of pose-invariant face recognition (PIFR) and face synthesis across poses. An extensive quantitative and qualitative evaluation carried out on several controlled and in-the-wild benchmarking datasets demonstrates the superiority of the proposed DED-GAN method over the state-of-the-art approaches.
引用
收藏
页码:130159 / 130171
页数:13
相关论文
共 50 条
  • [31] A Dual Attention Encoder-Decoder Text Summarization Model
    Hakami, Nada Ali
    Mahmoud, Hanan Ahmed Hosni
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3697 - 3710
  • [32] Encoder-decoder based convolutional neural networks for image forgery detection
    Fatima Zahra El Biach
    Imad Iala
    Hicham Laanaya
    Khalid Minaoui
    Multimedia Tools and Applications, 2022, 81 : 22611 - 22628
  • [33] CT IMAGE DENOISING WITH ENCODER-DECODER BASED GRAPH CONVOLUTIONAL NETWORKS
    Chen, Yu-Jen
    Tsai, Cheng-Yen
    Xu, Xiaowei
    Shi, Yiyu
    Ho, Tsung-Yi
    Huang, Meiping
    Yuan, Haiyun
    Zhuang, Jian
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 400 - 404
  • [34] Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model
    Liu, Jian
    Xia, Xiaodong
    Han, Chunyang
    Hui, Jiao
    Feng, Jim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 265 - 278
  • [35] AttentionHTR: Handwritten Text Recognition Based on Attention Encoder-Decoder Networks
    Kass, Dmitrijs
    Vats, Ekta
    DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 507 - 522
  • [36] An automated choroid segmentation approach using transfer learning and encoder-decoder networks
    Suthaharan, Shan
    Chhablani, Gunjan
    Vupparaboina, Kiran Kumar
    Sahel, Jose-Alain
    Dansingani, Kunal K.
    Chhablani, Jay
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [37] DISENTANGLED FEATURE BASED ADVERSARIAL LEARNING FOR FACIAL EXPRESSION RECOGNITION
    Bai, Mengchao
    Xie, Weicheng
    Shen, Linlin
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 31 - 35
  • [38] Encoder-Decoder Networks for Analyzing Thermal and Power Delivery Networks
    Chhabria, Vidya A.
    Ahuja, Vipul
    Prabhu, Ashwath
    Patil, Nikhil
    Jain, Palkesh
    Sapatnekar, Sachin S.
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (01)
  • [39] A Lightweight Encoder-Decoder Path for Deep Residual Networks
    Jin, Xin
    Xie, Yanping
    Wei, Xiu-Shen
    Zhao, Bo-Rui
    Zhang, Yongshun
    Tan, Xiaoyang
    Yu, Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 866 - 878
  • [40] Adversarial Partial Discharge Signal Reconstruction and Denoising With an Encoder-Decoder Network
    Firuzi, Keyvan
    IEEE ACCESS, 2024, 12 : 132271 - 132278