Relativistic lattice Boltzmann methods: Theory and applications

被引:35
|
作者
Gabbana, A. [1 ,2 ,3 ]
Simeoni, D. [1 ,2 ,3 ,4 ]
Succi, S. [5 ,6 ]
Tripiccione, R. [1 ,2 ]
机构
[1] Univ Ferrara, I-44122 Ferrara, Italy
[2] INFN Ferrara, I-44122 Ferrara, Italy
[3] Berg Univ Wuppertal, D-42119 Wuppertal, Germany
[4] Univ Cyprus, CY-1678 Nicosia, Cyprus
[5] Italian Inst Technol, Ctr Life Nano Sci La Sapienza, Viale Regina Elena 295, I-00161 Rome, Italy
[6] Natl Res Council Italy, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
THERMODYNAMICS; EQUATION; MODEL;
D O I
10.1016/j.physrep.2020.03.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a systematic account of recent developments of the relativistic Lattice Boltzmann method (RLBM) for dissipative hydrodynamics. We describe in full detail a unified, compact and dimension-independent procedure to design relativistic LB schemes capable of bridging the gap between the ultra-relativistic regime, k(B)T >> mc(2), and the non-relativistic one, k(B)T << mc(2). We further develop a systematic derivation of the transport coefficients as a function of the kinetic relaxation time in d = 1, 2, 3 spatial dimensions. The latter step allows to establish a quantitative bridge between the parameters of the kinetic model and the macroscopic transport coefficients. This leads to accurate calibrations of simulation parameters and is also relevant at the theoretical level, as it provides neat numerical evidence of the correctness of the Chapman-Enskog procedure. We present an extended set of validation tests, in which simulation results based on the RLBMs are compared with existing analytic or semi-analytic results in the mildly-relativistic (k(B)T similar to mc(2)) regime for the case of shock propagations in quark-gluon plasmas and laminar electronic flows in ultra-clean graphene samples. It is hoped and expected that the material collected in this paper may allow the interested readers to reproduce the present results and generate new applications of the RLBM scheme. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 63
页数:63
相关论文
共 50 条
  • [31] Lattice Boltzmann methods and active fluids
    Carenza, Livio Nicola
    Gonnella, Giuseppe
    Lamura, Antonio
    Negro, Giuseppe
    Tiribocchi, Adriano
    EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (06):
  • [32] Entropic lattice Boltzmann methods: A review
    Hosseini, S. A.
    Atif, M.
    Ansumali, S.
    Karlin, I. V.
    COMPUTERS & FLUIDS, 2023, 259
  • [33] Optimal preconditioning of lattice Boltzmann methods
    Izquierdo, Salvador
    Fueyo, Norberto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6479 - 6495
  • [34] Stability analysis of lattice Boltzmann methods
    Sterling, JD
    Chen, SY
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 123 (01) : 196 - 206
  • [35] On boundary conditions in lattice Boltzmann methods
    Chen, SY
    Martinez, D
    Mei, RW
    PHYSICS OF FLUIDS, 1996, 8 (09) : 2527 - 2536
  • [36] Investigation of lattice boltzmann methods for LES
    Freitas, Rainhill K.
    Schroeder, Wolfgang
    Meinke, Matthias
    PROGRESS IN TURBULENCE II, 2007, 109 : 279 - +
  • [37] COMPRESSIBLE LATTICE BOLTZMANN METHOD AND APPLICATIONS
    He, Bing
    Chen, Yingchun
    Feng, Weibing
    Li, Qing
    Song, Anping
    Wang, Yang
    Zhang, Miao
    Zhang, Wu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (02) : 410 - 418
  • [38] Lattice Boltzmann methods and active fluids
    Livio Nicola Carenza
    Giuseppe Gonnella
    Antonio Lamura
    Giuseppe Negro
    Adriano Tiribocchi
    The European Physical Journal E, 2019, 42
  • [39] Accelerating Lattice Boltzmann Applications with OpenACC
    Calore, Enrico
    Kraus, Jiri
    Schifano, Sebastiano Fabio
    Tripiccione, Raffaele
    EURO-PAR 2015: PARALLEL PROCESSING, 2015, 9233 : 613 - 624
  • [40] Lattice Boltzmann computations and applications to physics
    Chopard, B
    Luthi, PO
    THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 115 - 130