Review of ammonia-oxidizing bacteria and archaea in freshwater ponds

被引:25
|
作者
Lu, Shimin [1 ]
Liu, Xingguo [1 ]
Liu, Chong [1 ]
Wang, Xiaodong [1 ]
Cheng, Guofeng [1 ]
机构
[1] Chinese Acad Fishery Sci, Fishery Machinery & Instrument Res Inst, Shanghai 200092, Peoples R China
关键词
Ammonia-oxidizing archaea; Ammonia-oxidizing bacteria; Aquaculture water; Artificial substrate; Distribution; Freshwater aquaculture pond; Sediment; COMPLETE NITRIFICATION; SPATIAL-DISTRIBUTION; SEASONAL-VARIATIONS; RIVER; DIVERSITY; ABUNDANCE; NITROGEN; LAKE; MICROORGANISMS; SEGREGATION;
D O I
10.1007/s11157-018-9486-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aquaculture ponds are simple and unique ecosystems, which are affected intensively by human activities. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in pond water and sediments, as well as the possible ecological mechanisms involved. Moreover, we discuss the possibility of increasing the activity of ammonia-oxidizing organisms in order to improve the water quality in aquaculture ponds. Compared with eutrophic lakes, the significantly higher ammonia concentration in pond water does not lead to significantly higher AOB levels, and the abundance of AOA is too low to quantify accurately. Similar to eutrophic lakes, high abundances of AOA and AOB are present in the surface sediments at the same time, where the oxidation of ammonia is performed mainly by AOB. AOB and AOA exhibit significant seasonal variations in aquaculture ponds, which are affected by the temperature, pH, and dissolved oxygen. The dominant AOB species are Nitrosomonas and the Nitrosospira lineage in pond environments. Nitrososphaera or members of the Nitrososphaera-like cluster dominate the AOA species in surface sediments, whereas the Nitrosopumilus cluster dominates the deeper sediments. AOB and AOA can be enriched on artificial substrates suspended in the pond water, thereby potentially improving the water quality.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors
    Tong Zhang
    Lin Ye
    Amy Hin Yan Tong
    Ming-Fei Shao
    Si Lok
    Applied Microbiology and Biotechnology, 2011, 91 : 1215 - 1225
  • [22] Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments
    Meng Li
    Huiluo Cao
    Yiguo Hong
    Ji-Dong Gu
    Applied Microbiology and Biotechnology, 2011, 89 : 1243 - 1254
  • [23] Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils
    de Gannes, Vidya
    Eudoxie, Gaius
    Hickey, William J.
    PLOS ONE, 2014, 9 (02):
  • [24] Ammonium Availability Affects the Ratio of Ammonia-Oxidizing Bacteria to Ammonia-Oxidizing Archaea in Simulated Creek Ecosystems
    Herrmann, Martina
    Scheibe, Andrea
    Avrahami, Sharon
    Kuesel, Kirsten
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (05) : 1896 - 1899
  • [25] Ammonia-oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances, but ammonia-oxidizing archaea are resistant
    Tao, Rui
    Li, Jun
    Hu, Baowei
    Chu, Guixin
    GEODERMA, 2021, 384
  • [26] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors
    Zhang, Tong
    Ye, Lin
    Tong, Amy Hin Yan
    Shao, Ming-Fei
    Lok, Si
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 91 (04) : 1215 - 1225
  • [27] Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments
    Li, Meng
    Cao, Huiluo
    Hong, Yiguo
    Gu, Ji-Dong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (04) : 1243 - 1254
  • [28] Ammonia-Oxidizing Archaea (AOA) Play with Ammonia-Oxidizing Bacteria (AOB) in Nitrogen Removal from Wastewater
    Yin, Zhixuan
    Bi, Xuejun
    Xu, Chenlu
    ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL, 2018, 2018
  • [29] Composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in paddy soils of different rice cultivars
    宋亚娜
    林智敏
    林捷
    中国生态农业学报(中英文), 2009, (06) : 1211 - 1215
  • [30] Biological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaea
    Yaying Li
    Yang Zhang
    Stephen James Chapman
    Huaiying Yao
    Biology and Fertility of Soils, 2021, 57 : 399 - 407