A Nonlinear Landau-Zener Formula

被引:4
|
作者
Carles, Remi [1 ,2 ]
Fermanian-Kammerer, Clotilde [3 ]
机构
[1] CNRS, F-34095 Montpellier, France
[2] Univ Montpellier 2, F-34095 Montpellier, France
[3] Univ Paris EST, LAMA, UMR 8050, CNRS, F-94010 Creteil, France
关键词
Nonlinear scattering; Landau-Zener formula; Eigenvalue crossing; LEVEL-CROSSING PROBLEM; SEMICLASSICAL ANALYSIS; SCHRODINGER-EQUATIONS; PROPAGATION; SCATTERING; LIMIT; TIME;
D O I
10.1007/s10955-013-0785-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We show how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
引用
收藏
页码:619 / 656
页数:38
相关论文
共 50 条
  • [31] Landau-Zener formula in a "non-adiabatic" regime for avoided crossings
    Watanabe, Takuya
    Zerzeri, Maher
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [32] Landau-Zener transitions in chains
    Sinitsyn, N. A.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [33] Nonreciprocal Landau-Zener tunneling
    Kitamura, Sota
    Nagaosa, Naoto
    Morimoto, Takahiro
    COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [34] Landau-Zener interferometry for qubits
    Shytov, AV
    Ivanov, DA
    Feigel'man, MV
    EUROPEAN PHYSICAL JOURNAL B, 2003, 36 (02): : 263 - 269
  • [35] PROOF OF THE LANDAU-ZENER FORMULA IN AN ADIABATIC LIMIT WITH SMALL EIGENVALUE GAPS
    HAGEDORN, GA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) : 433 - 449
  • [36] Geometric Landau-Zener Interferometry
    Gasparinetti, S.
    Solinas, P.
    Pekola, J. P.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)
  • [37] Landau-Zener tunneling of solitons
    Loladze, Vazha
    Khomeriki, Ramaz
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [38] Landau-Zener effect in fission
    Mirea, M.
    Tassan-Got, L.
    Stephan, C.
    Bacri, C. O.
    Bobulescu, R. C.
    PHYSICAL REVIEW C, 2007, 76 (06):
  • [39] Landau-Zener interferometry for qubits
    A. V. Shytov
    D. A. Ivanov
    M. V. Feigel’man
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 36 : 263 - 269
  • [40] Experimental Landau-Zener Tunneling for Wave Redirection in Nonlinear Waveguides
    Wang, Chongan
    Kanj, Ali
    Mojahed, Alireza
    Tawfick, Sameh
    Vakakis, Alexander F.
    PHYSICAL REVIEW APPLIED, 2020, 14 (03):