Two-Dimensional Self-Similar Rotating Azimuthons in Strongly Nonlocal Nonlinear Media

被引:6
|
作者
Lai, Xian-Jing [1 ,2 ]
Jin, Mei-Zhen [3 ]
Zhang, Jie-Fang [2 ,3 ]
机构
[1] Zhejiang Shuren Univ, Dept Basic Sci, Hangzhou 310015, Zhejiang, Peoples R China
[2] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] Zhejiang Univ Media & Commun, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER-EQUATION; OPTICAL VORTICES; VORTEX BEAM; SOLITONS;
D O I
10.6122/CJP.51.230
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive analytical 2D self-similar rotating azimuthons of a strongly nonlocal nonlinear media with a space-dependent diffraction coefficient, a gain (attenuation) coefficient based on the similarity transformation, and a variational approach. Remarkably, these self-similar azimuthons have the azimuthal angle modulated by the distributed diffraction coefficient, apart from the beam width and intensity changing self-similarly.
引用
收藏
页码:230 / 242
页数:13
相关论文
共 50 条
  • [21] On a degenerate boundary value problem to the two-dimensional self-similar nonlinear wave system
    Jiajia Liu
    Yanbo Hu
    Tiehong Zhao
    Boundary Value Problems, 2019
  • [22] Transonic shock reflection problems for the self-similar two-dimensional nonlinear wave system
    Kim, Eun Heui
    Lee, Chung-Min
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 85 - 102
  • [23] On a degenerate boundary value problem to the two-dimensional self-similar nonlinear wave system
    Liu, Jiajia
    Hu, Yanbo
    Zhao, Tiehong
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [24] Two-dimensional multipole solitons in nonlocal nonlinear media
    Rotschild, Carmel
    Segev, Mordechai
    Xu, Zhiyong
    Kartashov, Yaroslav V.
    Torner, Lluis
    OPTICS LETTERS, 2006, 31 (22) : 3312 - 3314
  • [25] Two-dimensional Whittaker solitons in nonlocal nonlinear media
    Zhong, Wei-Ping
    Belic, Milivoj
    Xie, Rui-Hua
    Chen, Goong
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [26] SELF-SIMILAR COHERENT STRUCTURES IN TWO-DIMENSIONAL DECAYING TURBULENCE
    BENZI, R
    PATARNELLO, S
    SANTANGELO, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05): : 1221 - 1237
  • [27] Two-dimensional stationary nonlinear surface solitons in nonlocal nonlinear media
    Yan, Guodong
    Shi, Zhiwei
    Li, Huagang
    OPTICS COMMUNICATIONS, 2012, 285 (16) : 3535 - 3540
  • [28] An Interaction of a Rarefaction Wave and a Transonic Shock for the Self-Similar Two-Dimensional Nonlinear Wave System
    Kim, Eun Heui
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 610 - 646
  • [29] Propagation of the two-dimensional elegant Hermite-cosh-Gaussian beams in strongly nonlocal nonlinear media
    Honarasa, G.
    Keshavarz, A.
    OPTIK, 2013, 124 (24): : 6535 - 6538
  • [30] Two-dimensional spatial solitons in highly nonlocal nonlinear media
    Belic, M. R.
    Zhong, W. -P.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (01): : 97 - 106