Power System State Forecasting Using Regression Analysis

被引:0
|
作者
Hassanzadeh, Mohammad [1 ]
Evrenosoglu, Cansin Yaman [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
关键词
MODEL; IMPLEMENTATION; ESTIMATOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a block-diagonal state transition matrix based on regression analysis. The state transition matrix is used to forecast the system state, which is subsequently corrected through extended Kalman filter in classical dynamic state estimation (DSE). The transition matrix is updated when new online measurement data are available. The forecasting accuracy can be traded off according to the frequency of the updates. The tests on IEEE 14- and 30-bus system show improvement in the state forecasting accuracy when compared to the existing state forecasting methods in dynamic state estimation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Forecasting weather-related power outages using weighted logistic regression
    Sharma, Vinayak
    Hong, Tao
    Cecchi, Valentina
    Hofmann, Alex
    Lee, Ji Yoon
    IET SMART GRID, 2023, 6 (05) : 470 - 479
  • [32] Power load probability density forecasting using Gaussian process quantile regression
    Yang, Yandong
    Li, Shufang
    Li, Wenqi
    Qu, Meijun
    APPLIED ENERGY, 2018, 213 : 499 - 509
  • [33] Statistical Analysis and Forecasting of Damping in the Nordic Power System
    Sulla, Francesco
    Koivisto, Matti
    Seppanen, Janne
    Turunen, Jukka
    Haarla, Liisa C.
    Samuelsson, Olof
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (01) : 306 - 315
  • [34] Analysis and Forecasting of Randomly Varying Parameters of Power System
    Nair, Sruthi V.
    Sangita, Patil B.
    2014 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2014), 2014, : 1055 - 1059
  • [35] Index system of power sale market analysis and forecasting
    Hu, Jiangyi
    Jia, Junguo
    Lin, Hongyu
    Zhuang, Yan
    Kang, Chongqing
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (02): : 10 - 14
  • [36] State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems
    Lagos, Ana
    Caicedo, Joaquin E.
    Coria, Gustavo
    Romero Quete, Andres
    Martinez, Maximiliano
    Suvire, Gaston
    Riquelme, Jesus
    ENERGIES, 2022, 15 (18)
  • [37] Coordination and Optimization of Energy Using the Multiple Linear Regression Analysis in a Green Power System
    Niu, Xiaona
    Sun, Ying
    Zhao, Chuanhui
    Yu, Shenhang
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 539 - 542
  • [38] A Hybrid Deep Learning-Based Power System State Forecasting
    Hadayeghparast, Shahrzad
    Jahromi, Amir Namavar
    Karimipour, Hadis
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 893 - 898
  • [39] POWER SYSTEM STATE FORECASTING VIA DEEP RECURRENT NEURAL NETWORKS
    Zhang, Liang
    Wang, Gang
    Giannakis, Georgios B.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8092 - 8096
  • [40] Sensitivity Analysis of Exogenous Variables for Load Forecasting using Polynomial Regression
    Dab, Khansa
    Agbossou, Kodjo
    Cardenas, Alben
    Dube, Yves
    Kelouwani, Sousso
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 2560 - 2565