An effective approach for approximate analytical solutions of the damped Duffing equation

被引:59
|
作者
Turkyilmazoglu, M. [1 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
关键词
HOMOTOPY ANALYSIS METHOD; 2-DIMENSIONAL VISCOUS-FLOW; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTIONS;
D O I
10.1088/0031-8949/86/01/015301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the purely analytic solutions to the damped Duffing equation. It is shown that the employed homotopy method yields uniformly convergent solutions. Optimum values of the convergence control parameter of the computed homotopy series are calculated from the square residual error. The obtained explicit analytical expressions for the solution generate results that compare excellently with the numerically computed ones, which are further confirmed analytically by the absolute error formula.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Analytical and Approximate Solutions for Fractional Chaffee–Infante Equation
    Arafa A.
    Khaled O.
    Hagag A.
    International Journal of Applied and Computational Mathematics, 2023, 9 (3)
  • [32] The van der Waals equation: analytical and approximate solutions
    Berberan-Santos, Mario N.
    Bodunov, Evgeny N.
    Pogliani, Lionello
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (04) : 1437 - 1457
  • [33] APPROXIMATE ANALYTICAL SOLUTIONS TO POISSON-BOLTZMANN EQUATION
    PARLANGE, JY
    JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (04): : 1699 - 1700
  • [34] Periodic solutions of discontinuous damped Duffing equations
    Jiang, Fangfang
    Ji, Zhicheng
    Wang, Yan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 484 - 495
  • [35] AN EFFICIENT APPROACH FOR SOLVING THE FRACTAL, DAMPED CUBIC-QUINTIC DUFFING'S EQUATION
    Elias-Zuniga, Alex
    Martinez-romero, Oscar
    Trejo, Daniel olvera
    Palacios-pineda, Luis manuel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [36] On the approximate and analytical solutions to the fifth-order Duffing oscillator and its physical applications
    Salas, Alvaro H.
    El-Tantawy, S. A.
    Jairo, Castillo H. E.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021,
  • [37] Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions
    Belendez, A.
    Alvarez, M. L.
    Frances, J.
    Bleda, S.
    Belendez, T.
    Najera, A.
    Arribas, E.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [38] Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions
    Shinohara, Kazunori
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 118 (03): : 599 - 647
  • [39] Decay of approximate solutions for the damped semilinear wave equation on a bounded id domain
    Amadori, Debora
    Aqel, Fatima Al-Zahra'
    Dal Santo, Edda
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 166 - 206
  • [40] PERIODIC-SOLUTIONS AND BIFURCATION BEHAVIOR IN THE PARAMETRICALLY DAMPED 2-WELL DUFFING EQUATION
    XIE, FG
    HU, G
    PHYSICAL REVIEW E, 1995, 51 (04): : 2773 - 2778