Efficient circuit implementation of quantum walks on non-degree-regular graphs

被引:16
|
作者
Loke, T. [1 ]
Wang, J. B. [1 ]
机构
[1] Univ Western Australia, Sch Phys, Nedlands, WA 6009, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 04期
关键词
D O I
10.1103/PhysRevA.86.042338
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a set of highly efficient quantum circuits for discrete-time quantum walks on non-degree-regular graphs. In particular, we describe a general procedure for constructing highly efficient quantum circuits for quantum walks on star graphs of any degree and Cayley trees with an arbitrary number of layers, which are nonsparse in general. We also show how to modify these circuits to implement a full quantum-walk search algorithm on these graphs, without reference to a "black-box" oracle. This provides a practically implementable method to explore quantum-walk-based algorithms with the aim of eventual real-world applications.
引用
收藏
页数:7
相关论文
共 49 条
  • [21] Generic quantum walks with memory on regular graphs (vol 93, 042323, 2016)
    Li, Dan
    Mc Gettrick, Michael
    Gao, Fei
    Xu, Jie
    Wen, Qiao-Yan
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [22] Efficient Implementation of Discrete-Time Quantum Walks on Quantum Computers
    Razzoli, Luca
    Cenedese, Gabriele
    Bondani, Maria
    Benenti, Giuliano
    ENTROPY, 2024, 26 (04)
  • [23] Efficient quantum circuits for continuous-time quantum walks on composite graphs
    Loke, T.
    Wang, J. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (05)
  • [24] Quantum circuit model for discrete-time three-state quantum walks on Cayley graphs
    Sarkar, Rohit Sarma
    Adhikari, Bibhas
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [25] Random regular graphs of non-constant degree: Connectivity and hamiltonicity
    Cooper, C
    Frieze, A
    Reed, B
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (03): : 249 - 261
  • [26] Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory
    S. Salimi
    Quantum Information Processing, 2010, 9 : 75 - 91
  • [27] Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory
    Salimi, S.
    QUANTUM INFORMATION PROCESSING, 2010, 9 (01) : 75 - 91
  • [28] Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs
    Rudinger, Kenneth
    Gamble, John King
    Wellons, Mark
    Bach, Eric
    Friesen, Mark
    Joynt, Robert
    Coppersmith, S. N.
    PHYSICAL REVIEW A, 2012, 86 (02)
  • [29] Circuit implementation of discrete-time quantum walks via the shunt decomposition method
    Wing-Bocanegra, Allan
    Venegas-Andraca, Salvador E. E.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [30] Circuit Implementation of Discrete-Time Quantum Walks via the Shunt Decomposition Method
    Wing-Bocanegra, Allan
    Venegas-Andraca, Salvador E.
    arXiv, 2023,