Effectiveness of multiple-pair buffer layer to improve the GaN layers grown by metalorganic chemical vapor deposition

被引:17
|
作者
Yang, CC [1 ]
Wu, MC
Chang, CA
Chi, GC
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30043, Taiwan
[2] Ind Technol Res Inst, Opttoelect & Syst Labs, Hsinchu 30043, Taiwan
[3] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan
关键词
D O I
10.1063/1.370693
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-quality GaN epitaxial layers with a multiple-pair buffer layer have been grown on sapphire substrates in a separate-flow reactor by metalorganic chemical vapor deposition. Each pair of buffer layer consists of a 300 Angstrom thick GaN nucleation layer grown at a low temperature of 525 degrees C and a 1-4 mm thick GaN epitaxial layer grown at a high temperature of 1000 degrees C. The GaN samples with a multiple-pair buffer layer are characterized by double-crystal x-ray diffraction (DC-XRD), Hall method and photoluminescence (PL) at 300 K, and etch-pit density measurements. The optimized condition to obtain the best quality of GaN epitaxial layers is to grow the four-pair buffer layer with a pair thickness of 4 mm. The GaN samples with the optimized buffer layer exhibit a narrow full width at half maximum (FWHM) of 150 arcsec and a strong intensity in DC-XRD, a high electron mobility of 450 cm(2)/V s, a low background concentration of 3X10(17) cm(-3), a low etch-pit density of mid-10(5) cm(-2), and a narrow FWHM of 56 meV in PL spectrum. (C) 1999 American Institute of Physics. [S0021-8979(99)02712-7].
引用
收藏
页码:8427 / 8431
页数:5
相关论文
共 50 条
  • [31] Al composition variations in AlGaN films grown on low-temperature GaN buffer layer by metalorganic chemical vapor deposition
    Zhao, D. G.
    Jiang, D. S.
    Zhu, J. J.
    Liu, Z. S.
    Zhang, S. M.
    Yang, Hui
    Jahn, U.
    Ploog, K. H.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (24) : 5266 - 5269
  • [32] Impurity band in magnesium-doped GaN layers grown by metalorganic chemical vapor deposition
    Kang, DS
    Cheong, MG
    Lee, SK
    Suh, EK
    Hong, CH
    Lee, HJ
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (12): : 2759 - 2762
  • [33] Dislocation reduction in GaN epilayers grown on a GaNP buffer on sapphire substrate by metalorganic chemical vapor deposition
    Li, HD
    Tsukihara, M
    Naoi, Y
    Sakai, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (11B): : L1332 - L1335
  • [34] Influence of the nucleation layer annealing atmosphere on the resistivity of GaN grown by metalorganic chemical vapor deposition
    Luo, Weike
    Li, Liang
    Li, Zhonghui
    Dong, Xun
    Peng, Daqing
    Zhang, Dongguo
    Xu, Xiaojun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 633 : 494 - 498
  • [35] Annealing effects on low-temperature GaN layer grown by metalorganic chemical vapor deposition
    Kim, BY
    Choi, YH
    Hong, CH
    Kim, SH
    Yoo, TK
    COMPOUND SEMICONDUCTORS 1995, 1996, 145 : 291 - 294
  • [36] Optical properties of InGaAs linear graded buffer layers on GaAs grown by metalorganic chemical vapor deposition
    Lee, B
    Baek, JH
    Lee, JH
    Choi, SW
    Jung, SD
    Han, WS
    Lee, EH
    APPLIED PHYSICS LETTERS, 1996, 68 (21) : 2973 - 2975
  • [37] Surface morphology of AlN buffer layer and its effect on GaN growth by metalorganic chemical vapor deposition
    Zhao, DG
    Zhu, JJ
    Liu, ZS
    Zhang, SM
    Yang, H
    Jiang, DS
    APPLIED PHYSICS LETTERS, 2004, 85 (09) : 1499 - 1501
  • [38] Metalorganic chemical vapor deposition of InN on GaN/sapphire template by using thin InN buffer layer
    Ju, Jin-Woo
    Lee, Joo In
    Lee, In-Hwan
    THIN SOLID FILMS, 2006, 515 (04) : 2291 - 2294
  • [39] Point defect reduction in GaN layers grown with the aid of SiNx nanonet by metalorganic chemical vapor deposition
    Chevtchenko, S. A.
    Xie, J.
    Fua, Y.
    Ni, X.
    Morkoc, H.
    Litton, C. W.
    GALLIUM NITRIDE MATERIALS AND DEVICES II, 2007, 6473
  • [40] Residual stress in GaN films grown by metalorganic chemical vapor deposition
    Chen, Y
    Gulino, DA
    Higgins, R
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (05): : 3029 - 3032