Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions

被引:70
|
作者
Chakraborty, Arindam [1 ]
Pak, Michael V. [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2008年 / 129卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2943144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) approach for including electron-proton correlation in mixed nuclear-electronic wavefunctions is presented. A general ansatz for the nuclear-electronic wavefunction that includes explicit dependence on the nuclear-electronic distances with Gaussian-type geminal functions is proposed. Based on this ansatz, expressions are derived for the total energy and the electronic and nuclear Fock operators for multielectron systems. The explicit electron-proton correlation is incorporated directly into the self-consistent-field procedure for optimizing the nuclear-electronic wavefunction. This approach is computationally practical for many-electron systems because only a relatively small number of nuclei are treated quantum mechanically, and only electron-proton correlation is treated explicitly. Electron-electron correlation can be included by combining the NEO-XCHF approach with perturbation theory, density functional theory, and multiconfigurational methods. Previous nuclear-electronic orbital-based methods produce nuclear densities that are too localized, resulting in abnormally high stretching frequencies and inaccuracies in other properties relying on these densities. The application of the NEO-XCHF approach to the [He-H-He](+) model system illustrates that this approach includes the significant electron-proton correlation, thereby leading to an accurate description of the nuclear density. The agreement between the proton densities obtained with the NEO-XCHF and grid-based methods validates the underlying theory and the implementation of the NEO-XCHF method. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 31 条