Use of cholesky coordinates and the absolute nodal coordinate formulation in the computer simulation of flexible multibody systems

被引:51
|
作者
Yakoub, RY [1 ]
Shabana, AA [1 ]
机构
[1] Univ Illinois, Dept Mech Engn, Chicago, IL 60607 USA
关键词
dynamics of multibody systems; absolute nodal coordinate formulation; Cholesky decomposition; Cholesky coordinates; velocity transformation;
D O I
10.1023/A:1008323106689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In a previous publication, procedures that can be used with the absolute nodal coordinate formulation to solve the dynamic problems of flexible multibody systems were proposed. One of these procedures is based on the Cholesky decomposition. By utilizing the fact that the absolute nodal coordinate formulation leads to a constant mass matrix, a Cholesky decomposition is used to obtain a constant velocity transformation matrix. This velocity transformation is used to express the absolute nodal coordinates in terms of the generalized Cholesky coordinates. The inertia matrix associated with the Cholesky coordinates is the identity matrix, and therefore, an optimum sparse matrix structure can be obtained for the augmented multibody equations of motion. The implementation of a computer procedure based on the absolute nodal coordinate formulation and Cholesky coordinates is discussed in this paper. Numerical examples are presented in order to demonstrate the use of Cholesky coordinates in the simulation of the large deformations in flexible multibody applications.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 50 条
  • [21] Dynamic modeling of flexible multibody systems with complex geometry via finite cell method of absolute nodal coordinate formulation
    Feng, Yue
    Guo, Jianqiao
    Tian, Qiang
    Hu, Haiyan
    COMPUTATIONAL MECHANICS, 2024, 74 (06) : 1383 - 1408
  • [22] On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics
    Marcel Ellenbroek
    Jurnan Schilder
    Multibody System Dynamics, 2018, 43 : 193 - 208
  • [23] On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics
    Ellenbroek, Marcel
    Schilder, Jurnan
    MULTIBODY SYSTEM DYNAMICS, 2018, 43 (03) : 193 - 208
  • [24] Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods
    Yunqing Zhang
    Qiang Tian
    Liping Chen
    Jingzhou (James) Yang
    Multibody System Dynamics, 2009, 21 : 281 - 303
  • [25] Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods
    Yunqing Zhang
    Qiang Tian
    Liping Chen
    Jingzhou (James) Yang
    Multibody System Dynamics, 2009, 21 (3) : 305 - 305
  • [26] Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods
    Zhang, Yunqing
    Tian, Qiang
    Chen, Liping
    Yang, Jingzhou
    MULTIBODY SYSTEM DYNAMICS, 2009, 21 (03) : 281 - 303
  • [27] A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
    Dibold, Markus
    Gerstmayr, Johannes
    Irschik, Hans
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (02): : 1 - 10
  • [28] Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates
    Lars Kübler
    Peter Eberhard
    Johannes Geisler
    Nonlinear Dynamics, 2003, 34 : 31 - 52
  • [29] Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates
    Kübler, L
    Eberhard, P
    Geisler, J
    NONLINEAR DYNAMICS, 2003, 34 (1-2) : 31 - 52
  • [30] Verification of absolute nodal coordinate formulation in flexible multibody dynamics via physical experiments of large deformation problems
    Yoo, Wan-Suk
    Park, Su-Jin
    Dmitrochenko, Oleg N.
    Pogorelov, Dmitry Yu.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (01): : 81 - 93