Deep Dissimilarity Measure for Trajectory Analysis
被引:0
|
作者:
Arfa, Reza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, MalaysiaUniv Teknol Malaysia, Ctr Artificial Intelligence & Robot, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, Malaysia
Arfa, Reza
[1
]
Yusof, Rubiyah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, MalaysiaUniv Teknol Malaysia, Ctr Artificial Intelligence & Robot, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, Malaysia
Yusof, Rubiyah
[1
]
论文数: 引用数:
h-index:
机构:
Shabanzadeh, Parvaneh
[1
]
机构:
[1] Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot, Malaysia Japan Int Inst Technol MJIIT, Kuala Lumpur 54100, Malaysia
Trajectory analysis;
Dissimilarity measure;
Deep learning LSTM;
D O I:
10.1007/978-981-13-2853-4_11
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Quantifying dissimilarities between two trajectories is a challenging yet fundamental task in many trajectory analysis systems. Existing methods are computationally expensive to calculate. We proposed a dissimilarity measure estimate for trajectory data by using deep learning methodology. One advantage of the proposed method is that it can get executed on GPU, which can significantly reduce the execution time for processing large number of data. The proposed network is trained using synthetic data. A simulator to generate synthetic trajectories is proposed. We used a publicly available dataset to evaluate the proposed method for the task of trajectory clustering. Our experiments show the performance of our proposed method is comparable with other well-known dissimilarity measures while it is substantially faster to compute.
机构:
Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, MexicoUniv Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, Mexico
Riascos, Alejandro P.
Padilla, Francisco Hernandez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Ciudad Univ, Mexico City 04510, MexicoUniv Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, Mexico