Sensitivity and inversion of borehole flexural dispersions for formation parameters

被引:23
|
作者
Sinha, BK
机构
[1] Schlumberger-Doll Research, Ridgefield, CT 06877-4108, Old Quarry Road
关键词
borehole flexural dispersions; inversion; sensitivity; shear velocity;
D O I
10.1111/j.1365-246X.1997.tb04073.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Propagation characteristics of borehole flexural waves are functions of five borehole, fluid and formation parameters. Uncertainties in any of these model parameters may introduce errors in the estimate of formation shear-wave speed. Other sources of error in the estimate may be caused by deviations from the assumed circular borehole cross-section or heterogeneity in the material properties of formation in the vicinity of a borehole from the usually assumed homogeneous properties. The influence of uncertainties in model parameters on borehole flexural dispersion has been calculated from a general perturbation model based on Hamilton's principle. A sensitivity analysis of the flexural dispersion to small variations in the model parameters shows that the formation shear speed has by far the most dominant influence in a slow formation. In contrast, the flexural dispersion in a fast formation is significantly influenced by three of the five model parameters: the formation shear speed, the borehole fluid compressional speed and the borehole diameter. The frequency dependence of these sensitivity functions indicates that the inversion of flexural dispersion for formation shear speed is optimal in the range 2-4 kHz for a borehole of diameter 25.4 cm. The range of validity of the perturbation model has been estimated by comparing results of concentric annuli of different thicknesses, and shear-wave speeds different from that of the formation with those from exact numerical solutions from a modal search program. Generally, the perturbation results for altered annuli of thicknesses up to 15 cm are accurate to within 1 per cent for a shear-wave speed 10 per cent lower than that of the formation. This difference between the perturbation and exact results increases to approximately 1 to 3 per cent for a shear-wave speed 20 per cent lower than that of the formation.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 50 条
  • [21] INVERSION OF BOREHOLE GUIDED WAVE AMPLITUDES FOR FORMATION SHEAR-WAVE ATTENUATION VALUES
    BURNS, DR
    CHENG, CH
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B12): : 12713 - 12725
  • [22] Mandrel effects on the dipole flexural mode in a borehole
    Hsu, CJ
    Sinha, BK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (04): : 2025 - 2039
  • [23] Optimized inversion of borehole temperature data
    Cooper, GRJ
    Jones, MQW
    GEOPHYSICS, 1998, 63 (02) : 331 - 336
  • [24] INVERSION OF BOREHOLE BREAKOUT ORIENTATION DATA
    QIAN, W
    PEDERSEN, LB
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1991, 96 (B12) : 20093 - 20107
  • [25] Hydraulic Fracture Induced Changes in Borehole Modal Dispersions
    Lei, Ting
    Sinha, Bikash K.
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 174 - 177
  • [26] On phase inversion characteristics of stirred dispersions
    Kumar, S
    CHEMICAL ENGINEERING SCIENCE, 1996, 51 (05) : 831 - 834
  • [27] Borehole flexural waves in formations with radially varying properties
    Sinha, BK
    Valero, HP
    Ikegami, T
    Pabon, J
    2005 IEEE Ultrasonics Symposium, Vols 1-4, 2005, : 556 - 559
  • [28] 2D INVERSION OF BOREHOLE LOGGING DATA FOR SIMULTANEOUS DETERMINATION OF ROCK INTERFACES AND PETROPHYSICAL PARAMETERS
    Dobroka, M.
    Szabo, P. N.
    Cardarelli, E.
    Vass, P.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2009, 44 (04): : 458 - 479
  • [29] 2D inversion of borehole logging data for simultaneous determination of rock interfaces and petrophysical parameters
    M. Dobróka
    P. N. Szabó
    E. Cardarelli
    P. Vass
    Acta Geodaetica et Geophysica Hungarica, 2009, 44 : 459 - 479
  • [30] SENSITIVITY OF A LIDAR INVERSION ALGORITHM TO PARAMETERS RELATING ATMOSPHERIC BACKSCATTER AND EXTINCTION
    HUGHES, HG
    FERGUSON, JA
    STEPHENS, DH
    APPLIED OPTICS, 1985, 24 (11): : 1609 - 1613