Lidar Point Cloud Guided Monocular 3D Object Detection

被引:23
|
作者
Peng, Liang [1 ,2 ]
Liu, Fei
Yu, Zhengxu [1 ]
Yan, Senbo [1 ,2 ]
Deng, Dan [2 ]
Yang, Zheng [2 ]
Liu, Haifeng [1 ]
Cai, Deng [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab CAD & CG, Hangzhou, Peoples R China
[2] Fabu Inc, Hangzhou, Peoples R China
来源
关键词
Monocular 3D detection; LiDAR point cloud; Self-driving;
D O I
10.1007/978-3-031-19769-7_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular 3D object detection is a challenging task in the self-driving and computer vision community. As a common practice, most previous works use manually annotated 3D box labels, where the annotating process is expensive. In this paper, we find that the precisely and carefully annotated labels may be unnecessary in monocular 3D detection, which is an interesting and counterintuitive finding. Using rough labels that are randomly disturbed, the detector can achieve very close accuracy compared to the one using the ground-truth labels. We delve into this underlying mechanism and then empirically find that: concerning the label accuracy, the 3D location part in the label is preferred compared to other parts of labels. Motivated by the conclusions above and considering the precise LiDAR 3D measurement, we propose a simple and effective framework, dubbed LiDAR point cloud guided monocular 3D object detection (LPCG). This framework is capable of either reducing the annotation costs or considerably boosting the detection accuracy without introducing extra annotation costs. Specifically, It generates pseudo labels from unlabeled LiDAR point clouds. Thanks to accurate LiDAR 3D measurements in 3D space, such pseudo labels can replace manually annotated labels in the training of monocular 3D detectors, since their 3D location information is precise. LPCG can be applied into any monocular 3D detector to fully use massive unlabeled data in a selfdriving system. As a result, in KITTI benchmark, we take the first place on both monocular 3D and BEV (bird's-eye-view) detection with a significant margin. In Waymo benchmark, our method using 10% labeled data achieves comparable accuracy to the baseline detector using 100% labeled data. The codes are released at https://github.com/SPengLiang/LPCG.
引用
收藏
页码:123 / 139
页数:17
相关论文
共 50 条
  • [21] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [22] 3D object detection in voxelized point cloud scene
    Li Rui-long
    Wu Chuan
    Zhu Ming
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (10) : 1355 - 1363
  • [23] Learning Depth-Guided Convolutions for Monocular 3D Object Detection
    Ng, Mingyu
    Huo, Yuqi
    Yi, Hongwei
    Wang, Zhe
    Shi, Jianping
    Lu, Zhiwu
    Luo, Ping
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4306 - 4315
  • [24] Geometry-Guided Domain Generalization for Monocular 3D Object Detection
    Yang, Fan
    Chen, Hui
    He, Yuwei
    Zhao, Sicheng
    Zhang, Chenghao
    Ni, Kai
    Ding, Guiguang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6467 - 6476
  • [25] MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection
    Zhang, Renrui
    Qiu, Han
    Wang, Tai
    Guo, Ziyu
    Cui, Ziteng
    Qiao, Yu
    Li, Hongsheng
    Gao, Peng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9121 - 9132
  • [26] Probabilistic instance shape reconstruction with sparse LiDAR for monocular 3D object detection
    Ji, Chaofeng
    Wu, Han
    Liu, Guizhong
    NEUROCOMPUTING, 2023, 529 : 92 - 100
  • [27] Research and application of indoor 3D object detection based on Lidar and Monocular camera
    Jiang, Yi
    Sun, Bingyu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1119 - 1123
  • [28] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [29] Disentangling Monocular 3D Object Detection
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Lopez-Antequera, Manuel
    Kontschieder, Peter
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1991 - 1999
  • [30] CL3D: Camera-LiDAR 3D Object Detection With Point Feature Enhancement and Point-Guided Fusion
    Lin, Chunmian
    Tian, Daxin
    Duan, Xuting
    Zhou, Jianshan
    Zhao, Dezong
    Cao, Dongpu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18040 - 18050