SPARSE MULTIVARIATE FACTOR REGRESSION

被引:0
|
作者
Kharratzadeh, Milad [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
关键词
Sparse Multivariate Regression; Factor Regression; Low Rank; Sparse Principal Component Analysis; SIMULTANEOUS DIMENSION REDUCTION; SELECTION; LASSO; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a sparse multivariate regression algorithm which simultaneously performs dimensionality reduction and parameter estimation. We decompose the coefficient matrix into two sparse matrices: a long matrix mapping the predictors to a set of factors and a wide matrix estimating the responses from the factors. We impose an elastic net penalty on the former and an l(1) penalty on the latter. Our algorithm simultaneously performs dimension reduction and coefficient estimation and automatically estimates the number of latent factors from the data. Our formulation results in a non-convex optimization problem, which despite its flexibility to impose effective low-dimensional structure, is difficult, or even impossible, to solve exactly in a reasonable time. We specify a greedy optimization algorithm based on alternating minimization to solve this non-convex problem and provide theoretical results on its convergence and optimality. Finally, we demonstrate the effectiveness of our algorithm via experiments on simulated and real data.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Bayesian latent factor regression for multivariate functional data with variable selection
    Noh, Heesang
    Choi, Taeryon
    Park, Jinsu
    Chung, Yeonseung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 901 - 923
  • [42] Bayesian latent factor regression for multivariate functional data with variable selection
    Heesang Noh
    Taeryon Choi
    Jinsu Park
    Yeonseung Chung
    Journal of the Korean Statistical Society, 2020, 49 : 901 - 923
  • [43] Sparse partial least squares regression for on-line variable selection with multivariate data streams
    McWilliams B.
    Montana G.
    Statistical Analysis and Data Mining, 2010, 3 (03): : 170 - 193
  • [44] Time delay prediction for space telerobot system with a modified sparse multivariate linear regression method
    Chen, Haifei
    Huang, Panfeng
    Liu, Zhengxiong
    Ma, Zhiqiang
    ACTA ASTRONAUTICA, 2020, 166 : 330 - 341
  • [45] Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study
    Zhang, Haixiang
    Zheng, Yinan
    Yoon, Grace
    Zhang, Zhou
    Gao, Tao
    Joyce, Brian
    Zhang, Wei
    Schwartz, Joel
    Vokonas, Pantel
    Colicino, Elena
    Baccarelli, Andrea
    Hou, Lifang
    Liu, Lei
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2017, 16 (03) : 159 - 171
  • [46] Sparse Convex Regression
    Bertsimas, Dimitris
    Mundru, Nishanth
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (01) : 262 - 279
  • [47] Blockwise sparse regression
    Kim, Yuwon
    Kim, Jinseog
    Kim, Yongdai
    STATISTICA SINICA, 2006, 16 (02) : 375 - 390
  • [48] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217
  • [49] Adaptive sparse regression
    Figueiredo, MAT
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 237 - 247
  • [50] Sparse Regression Codes
    Venkataramanan, Ramji
    Tatikonda, Sekhar
    Barron, Andrew
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2019, 15 (1-2): : 1 - 195