Analysis of a combined power and ejector-refrigeration cycle using low temperature heat

被引:97
|
作者
Habibzadeh, A. [1 ]
Rashidi, M. M. [1 ]
Galanis, N. [2 ]
机构
[1] Bu Ali Sina Univ, Dept Mech Engn, Fac Engn, Hamadan, Iran
[2] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Combined power and refrigeration; Organic Rankine cycle; Ejector refrigeration cycle; Energy analysis; Exergy analysis; ORGANIC RANKINE-CYCLE; WASTE HEAT; WORKING FLUIDS; OPTIMIZATION; RECOVERY; DESIGN;
D O I
10.1016/j.enconman.2012.08.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents the thermodynamic study of a thermal system which combines an organic Rankine cycle (ORC) and an ejector refrigeration cycle. The performance of different working fluids (R123, R141b, R245fa, R600a, R601a) is investigated using classical (1st and 2nd law) and finite-size thermodynamics for a case for which the power to refrigeration ratio is 10. At first the pressure at the turbine inlet is fixed and the heat source temperature, the evaporation temperature, the cooling water temperature and the expansion ratio of the turbine are varied one at a time. Their effect on the thermal efficiency, the total exergy destruction, the total thermal conductance and the entrainment ratio of the ejector is calculated and analyzed. Further results are then obtained by varying either the inlet pressure of the pump (or, equivalently, the evaporation temperature) or the inlet pressure of the turbine. They show that these variables can be optimized to get a minimum total thermal conductance. R141b has the lowest optimum pressure and smallest total thermal conductance for both these optimum conditions. On the other hand, R601a has the highest thermal efficiency and lowest total exergy destruction in both optimum cases. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [42] Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery
    Pan, Mingzhang
    Bian, Xingyan
    Zhu, Yan
    Liang, Youcai
    Lu, Fulu
    Xiao, Gang
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [43] Thermodynamic analysis of the effect of internal heat exchanger on the dual-ejector transcritical CO2 cycle for low-temperature refrigeration
    Zeng, Min-Qiang
    Zhang, Xue-Lai
    Mo, Fan-Yang
    Zhang, Xin-Rong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (09) : 12702 - 12721
  • [44] A novel organic Rankine cycle-ejector booster refrigeration cycle for low-temperature sources
    Hacipasaoglu, Servet Giray
    APPLIED THERMAL ENGINEERING, 2025, 266
  • [45] Thermoeconomic analysis of CO2 Ejector-Expansion Refrigeration Cycle (EERC) for low-temperature refrigeration in warm climates
    Peris Perez, Bernardo
    Exposito Carrillo, Jose Antonio
    Sanchez de La Flor, Francisco Jose
    Salmeron Lissen, Jose Manuel
    Morillo Navarro, Andres
    APPLIED THERMAL ENGINEERING, 2021, 188
  • [46] Combined cycle power plant with integrated low temperature heat (LOTHECO)
    Kakaras, E
    Doukelis, A
    Leithner, R
    Aronis, N
    APPLIED THERMAL ENGINEERING, 2004, 24 (11-12) : 1677 - 1686
  • [47] Parametric analysis and optimization for a combined power and refrigeration cycle
    Wang, Jiangfeng
    Dai, Yiping
    Gao, Lin
    APPLIED ENERGY, 2008, 85 (11) : 1071 - 1085
  • [48] Analysis of a combined power and refrigeration cycle by the exergy method
    Vidal, A.
    Best, R.
    Rivero, R.
    Cervantes, J.
    ENERGY, 2006, 31 (15) : 3401 - 3414
  • [49] Analysis of a combined power and refrigeration cycle by the exergy method
    Vidal, A
    Best, R
    Rivero, R
    Cervantes, J
    Energy-Efficient, Cost-Effective and Environmentally-Sustainable Systems and Processes, Vols 1-3, 2004, : 1207 - 1218
  • [50] Analysis of a novel combined cooling and power system by integrating of supercritical CO2 Brayton cycle and transcritical ejector refrigeration cycle
    Huang, Yulei
    Jiang, Peixue
    Zhu, Yinhai
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269