Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization

被引:86
|
作者
Xiong, Fengchao [1 ]
Qian, Yuntao [1 ]
Zhou, Jun [2 ]
Tang, Yuan Yan [3 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Inst Artificial Intelligence, Hangzhou 310027, Zhejiang, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[3] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 04期
基金
中国国家自然科学基金;
关键词
Hyperspectral unmixing; nonnegative tensor factorization (NTF); spectral-spatial information; total variation (TV); MATRIX FACTORIZATION; DECOMPOSITION; SPARSITY; REPRESENTATION; ALGORITHMS; RECOVERY;
D O I
10.1109/TGRS.2018.2872888
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing decomposes a hyperspectral imagery (HSI) into a number of constituent materials and associated proportions. Recently, nonnegative tensor factorization (NTF)-based methods have been proposed for hyperspectral unmixing thanks to their capability in representing an HSI without any information loss. However, tensor factorization-based HSI processing approaches often suffer from low-signal-to-noise ratio condition of HSI and nonuniqueness of the solution. This problem can be effectively alleviated by introducing various spatial constraints into tensor factorization to suppress the noise and decrease the number of extreme, stationary, and saddle points. On the other hand, total variation (TV) adaptively promotes piecewise smoothness while preserving edges. In this paper, we propose a TV regularized matrix-vector NTF method. It takes advantage of tensor factorization in preserving global spectral-spatial information and the merits of TV in exploiting local spatial information, thus generating smooth abundance maps with preserved edges. Experimental results on synthetic and real-world data show that the proposed method outperforms the state-of-the-art methods.
引用
收藏
页码:2341 / 2357
页数:17
相关论文
共 50 条
  • [41] Nonnegative matrix factorization with entropy regularization for hyperspectral unmixing
    Liu, Junmin
    Yuan, Shuai
    Zhu, Xuehu
    Huang, Yifan
    Zhao, Qian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6362 - 6393
  • [42] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR ROBUST HYPERSPECTRAL UNMIXING
    Feng, Fan
    Deng, Chenwei
    Wang, Wenzheng
    Dai, Jiahui
    Li, Zhenzhen
    Zhao, Baojun
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4221 - 4224
  • [43] A complexity constrained nonnegative matrix factorization for hyperspectral unmixing
    Jia, Sen
    Qian, Yuntao
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 268 - +
  • [44] STRUCTURED DISCRIMINATIVE NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Li, Xue
    Zhou, Jun
    Tong, Lei
    Yu, Xun
    Guo, Jianhui
    Zhao, Chunxia
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1848 - 1852
  • [45] A Novel Nonnegative Matrix Factorization Method for Hyperspectral Unmixing
    Xu, Nan
    Yang, Huadong
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [46] Hyperspectral Unmixing Based on Constrained Nonnegative Matrix Factorization
    Jia Xiangxiang
    Guo Baofeng
    Ding Fanchang
    Xu Wenjie
    ACTA PHOTONICA SINICA, 2021, 50 (07)
  • [47] Geometric Nonnegative Matrix Factorization (GNMF) for Hyperspectral Unmixing
    Yang, Shuyuan
    Zhang, Xiantong
    Yao, Yigang
    Cheng, Shiqian
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2696 - 2703
  • [48] Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization
    Fevotte, Cedric
    Dobigeon, Nicolas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4810 - 4819
  • [49] Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Liu, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6076 - 6090
  • [50] Multi-graph regularized multi-kernel nonnegative matrix factorization for hyperspectral image unmixing
    Liu, Jing
    Li, Kangxin
    Zhang, You
    Liu, Yi
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (14): : 1657 - 1668